

Steven Seeley – Ruxcon 2012

Steven Seeley
steven@immunityinc.com

@net__ninja

How to catch a
chameleon

Steven Seeley – Ruxcon 2012

C:\> whoami /all?
● mr_me
● Security Researcher @ Immunity Inc
● A member of Corelan Security Team
● A python developer
● A new age exploit developer, started with

Win32 not Unix :->

Steven Seeley – Ruxcon 2012

Agenda
● What is 'heaper' ?
● Motivations
● Meta – data attack techniques covered by the tool
● Functional design
● Using heaper -

● Analyze windows structs
● Dump function pointers
● Find writable pointers
● Analyze the allocator state

Steven Seeley – Ruxcon 2012

Agenda - cont
● Demo – Adobe Photoshop CS5 TIFF image parsing

heap buffer overflow
● More on using heaper -

● Analyzing the freelistInUse struct
● Hooking the heap manager
● Patching/updating/configuring heaper
● Detecting potential meta-data attack options

● Demo – IE Fixed COL span heap buffer overflow

Steven Seeley – Ruxcon 2012

Agenda - cont
● Limitations
● Future work
● Conclusion

Steven Seeley – Ruxcon 2012

But first.
An entomologist's lesson.

Steven Seeley – Ruxcon 2012

Definition of a chameleon?

Steven Seeley – Ruxcon 2012

A chameleon's diet

Steven Seeley – Ruxcon 2012

Chameleon Heap manager
Slow moving Slow evolution of security in heap managers

for some vendors *

Protruding, rotating eyes Symptoms of long debugging sessions

Ability to change color
rapidly

Ability to change its state rapidly

Kills and eats bugs Difficultly leads to disclosure, in hope of
other researchers demonstrating exploitation

Similarities to the heap

* Some, meaning mostly mobile platform vendors with some exemptions

Steven Seeley – Ruxcon 2012

What is Heaper
● A multi platform win32 heap analysis tool
● A plug-in for Immunity Debugger
● Developed in Python using immlib/heaplib
● An offensive focused tool:

● Visualize the heap layout
● Determine exploitable conditions using meta-data
● Find application specific heap primitives
● Find application specific function pointers
● Modify heap structures on the fly for simulation
● etc

Steven Seeley – Ruxcon 2012

Motivations
● 3-6 months developing a heap exploit VS 3-6

months developing a heap analysis tool
● Meta-data attacks live longer than heap overflow

bugs
● Many good heap exploit techniques exist,

however often supported by poor or scattered
documentation.

● Part of my self learning of advanced user mode
memory corruption attacks

Steven Seeley – Ruxcon 2012

Motivations

Steven Seeley – Ruxcon 2012

Heap exploit techniques
Technique Platform Difficulty* Reliability* Supported

Coalesce unlink() NT 5.[0/1] 10% 100% Yes

VirtualAlloc block unlink() NT 5.[0/1] Unknown Unknown No

Lookaside head overwrite NT 5.2 50-60% Unknown Yes

Freelist insert/search/relink NT 5.2 Unknown Unknown Yes

Bitmap flip NT 5.2 50-60% Unknown Yes

Heap cache desycronisation NT 5.2 90% Unknown No

Critical section unlink() NT 5.2 50% 70% No

FreeEntryOverwrite NT 6.[0/1] 50% 60% Yes

Segment Offset NT 6.[0/1] 50% 80% Yes

Depth De-sync NT 6.[0/1] 50% 70% Yes

UserBlocks Overwrite NT 6.2 90% 40% No

Application data ANY Unknown Unknown Yes

Difficulty/Reliability* - estimate based on own research, will vary depending on context

Steven Seeley – Ruxcon 2012

Functional design
● Object oriented design
● Easily extend-able
● Chunk validation based
 on allocator ordering &
 categorization

● General heuristics
 check per allocator

Steven Seeley – Ruxcon 2012

Functional design
Chunk validation:

● Lets say we have chunk 0xBADF00D in FreeList[0].
● We know relative offsets:

● 0xBADF00D+0x0 is the size
● 0xBADF00D+0x2 is the previous chunks size
● 0xBADF00D+0x4 is the cookie
● 0xBADF00D+0x8 is the Flink/Blink

Therefore, we can validate the chunk based on its
positioning!

Steven Seeley – Ruxcon 2012

Functional design
Chunk validation:

-> Windows 2000/XP FreeList[0]

If not (previous_chunk_size < current_chunk_size) or not (next_chunk_size
> current_chunk_size) or not (previous_chunk_addr != next_chunk_addr):

chunk overwrite detected!

-> Windows 7 LFH (size is encoded)

result = "%x" % (encoded_header ^ self.heaper.pheap.EncodingKey)

if (int(a+block.BaseIndex) == 0x7f or int(a+block.BaseIndex) == 0x7ff):

decoded_size = int(result[len(result)-4:len(result)],16)

if decoded_size > int(a+block.BaseIndex):

chunk overwrite detected!

Steven Seeley – Ruxcon 2012

Functional design
Graphing:

● We all know that little green men are hard to understand

● Uses pydot/graphviz/pyparser (the same engine in PaiMei RE framework)

● Again, extensible, graphing is done in its own method using a customized
struct based on the allocator type (LFH/Freelist/ListHint/Lookaside)

● chunk validation is applied within the graphing engine too

●

Steven Seeley – Ruxcon 2012

Using heaper

Steven Seeley – Ruxcon 2012

Analyze windows structs

Steven Seeley – Ruxcon 2012

Dump function pointers

Steven Seeley – Ruxcon 2012

Find writable pointers

Steven Seeley – Ruxcon 2012

Analyze the allocator state

Steven Seeley – Ruxcon 2012

Demo
Adobe Photoshop CS5 TIFF
image parsing heap buffer

overflow

Steven Seeley – Ruxcon 2012

More on using
heaper

Steven Seeley – Ruxcon 2012

Analyze the freelistinuse

Steven Seeley – Ruxcon 2012

hook the heap manager

Steven Seeley – Ruxcon 2012

Patch/update/config

Steven Seeley – Ruxcon 2012

Demo
IE Fixed col span heap buffer

overflow

Steven Seeley – Ruxcon 2012

Detecting potential meta-data
attack options

● We know it can be hard to understand the
little green men...

● Answer: visualize a the heap layout for:
● chunk overwrites
● Heap primitives

● Can be separated based on bin size (good for
large heap structures).

Steven Seeley – Ruxcon 2012

Limitations
● Does not analyze LFH on XP
● Does not analyze LFH on Windows 8
● Supports only a limited number of meta-data

attacks for now
● Does not log analysis findings external to the

debugger
● Needs a decent heap search function

Steven Seeley – Ruxcon 2012

Conclusion
● Run-time analysis of the heap to detect meta-

data attack conditions is complex
● Some form of SMT solver maybe more

applicable to this type of analysis :->
● Immunity will continue to be a leader in the

development and application of heap
exploitation techniques

●

Steven Seeley – Ruxcon 2012

Miami

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

