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C:\> whoami /all?
● mr_me
● Security Researcher @ Immunity Inc
● A member of Corelan Security Team
● A python developer
● A new age exploit developer, started with 

Win32 not Unix :->
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Agenda 
● What is 'heaper' ?
● Motivations
● Meta – data attack techniques covered by the tool
● Functional design
● Using heaper - 

● Analyze windows structs
● Dump function pointers
● Find writable pointers
● Analyze the allocator state
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Agenda - cont 
● Demo – Adobe Photoshop CS5 TIFF image parsing 

heap buffer overflow
● More on using heaper -

● Analyzing the freelistInUse struct
● Hooking the heap manager
● Patching/updating/configuring heaper
● Detecting potential meta-data attack options

● Demo – IE Fixed COL span heap buffer overflow



 

Steven Seeley – Ruxcon 2012

Agenda - cont 
● Limitations
● Future work
● Conclusion
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But first.
An entomologist's lesson.
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Definition of a chameleon?
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A chameleon's diet
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Chameleon Heap manager
Slow moving Slow evolution of security in heap managers 

for some vendors *

Protruding, rotating eyes Symptoms of long debugging sessions

Ability to change color 
rapidly

Ability to change its state rapidly

Kills and eats bugs Difficultly leads to disclosure, in hope of 
other researchers demonstrating exploitation

Similarities to the heap

* Some, meaning mostly mobile platform vendors with some exemptions
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What is Heaper
● A multi platform win32 heap analysis tool
● A plug-in for Immunity Debugger
● Developed in Python using immlib/heaplib
● An offensive focused tool:

● Visualize the heap layout
● Determine exploitable conditions using meta-data
● Find application specific heap primitives
● Find application specific function pointers
● Modify heap structures on the fly for simulation
● etc
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Motivations
● 3-6 months developing a heap exploit  VS 3-6 

months developing a heap analysis tool
● Meta-data attacks live longer than heap overflow 

bugs
● Many good heap exploit techniques exist, 

however often supported by poor or scattered 
documentation.

● Part of my self learning of advanced user mode 
memory corruption attacks
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Motivations
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Heap exploit techniques
Technique Platform Difficulty* Reliability* Supported

Coalesce unlink() NT 5.[0/1] 10% 100% Yes 

VirtualAlloc block unlink() NT 5.[0/1] Unknown Unknown No 

Lookaside head overwrite NT 5.2 50-60% Unknown Yes 

Freelist insert/search/relink NT 5.2 Unknown Unknown Yes 

Bitmap flip NT 5.2 50-60% Unknown Yes 

Heap cache desycronisation NT 5.2 90% Unknown No 

Critical section unlink() NT 5.2 50% 70% No 

FreeEntryOverwrite NT 6.[0/1] 50% 60% Yes 

Segment Offset NT 6.[0/1] 50% 80% Yes 

Depth De-sync NT 6.[0/1] 50% 70% Yes 

UserBlocks Overwrite NT 6.2 90% 40% No 

Application data ANY Unknown Unknown Yes

Difficulty/Reliability* - estimate based on own research, will vary depending on context  
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Functional design
●    Object oriented design
●     Easily extend-able
●     Chunk validation based 
     on allocator ordering & 
     categorization

●     General heuristics 
     check per allocator
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Functional design
Chunk validation:

● Lets say we have chunk 0xBADF00D in FreeList[0].
● We know relative offsets:

● 0xBADF00D+0x0 is the size
● 0xBADF00D+0x2 is the previous chunks size
● 0xBADF00D+0x4 is the cookie
● 0xBADF00D+0x8 is the Flink/Blink

Therefore, we can validate the chunk based on its 
positioning!
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Functional design
Chunk validation:

-> Windows 2000/XP FreeList[0]

If not (previous_chunk_size < current_chunk_size) or not (next_chunk_size 
> current_chunk_size) or not (previous_chunk_addr != next_chunk_addr):

chunk overwrite detected!

-> Windows 7 LFH (size is encoded)

result = "%x" % (encoded_header ^ self.heaper.pheap.EncodingKey)

if (int(a+block.BaseIndex) == 0x7f or int(a+block.BaseIndex) == 0x7ff):

decoded_size = int(result[len(result)-4:len(result)],16)

if decoded_size >  int(a+block.BaseIndex):

chunk overwrite detected!
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Functional design
Graphing:

● We all know that little green men are hard to understand

● Uses pydot/graphviz/pyparser (the same engine in PaiMei RE framework)

● Again, extensible, graphing is done in its own method using a customized 
struct based on the allocator type (LFH/Freelist/ListHint/Lookaside)

● chunk validation is applied within the graphing engine too

●



 

Steven Seeley – Ruxcon 2012

Using heaper
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Analyze windows structs
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Dump function pointers
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Find writable pointers
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Analyze the allocator state
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Demo
Adobe Photoshop CS5 TIFF 
image parsing heap buffer 

overflow
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More on using 
heaper
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Analyze the freelistinuse
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hook the heap manager
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Patch/update/config
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Demo
IE Fixed col span heap buffer 

overflow
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Detecting potential meta-data 
attack options

● We know it can be hard to understand the 
little green men...

● Answer: visualize a the heap layout for:
● chunk overwrites
● Heap primitives

● Can be separated based on bin size (good for 
large heap structures).
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Limitations
● Does not analyze LFH on XP
● Does not analyze LFH on Windows 8
● Supports only a limited number of meta-data 

attacks for now
● Does not log analysis findings external to the 

debugger
● Needs a decent heap search function 
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Conclusion
● Run-time analysis of the heap to detect meta-

data attack conditions is complex
● Some form of SMT solver maybe more 

applicable to this type of analysis :->
● Immunity will continue to be a leader in the 

development and application of heap 
exploitation techniques

●
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Miami
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